Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-12/27 = 3x-1/9
=> -4/9 = 3x -1/9
=> 3x - 1 = -4
3x = -4 + 1 = -3
x = -3 : 3 = -1
3-x/45 = 2/9 = 1/2y
Ta có 3-x/45 = 2/9
=> 9(3-x) = 45 . 2
=> 9(3-x) = 90
3-x = 90 : 9 = 10
x = 3 - 10 = -7
2/9 = 1/2y
=> 2(2y) = 9 . 1
=> 4y = 9
y = 9 : 4 = 9/4
1.
c. \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
2.
a. \(45-5\left(y+1\right)=10\)
\(\Rightarrow5\left(y+1\right)=35\)
\(\Rightarrow y+1=7\)
\(\Rightarrow y=6\)
b. \(y:2+y:2=15\)
\(\Rightarrow\frac{1}{2}y+\frac{1}{2}y=15\)
\(\Rightarrow y=15\)
Bài 1 :
\(a,12,5\times32\times8\)
\(=\left(12,5\times8\right)\times32\)
\(=100\times32\)
\(=3200\)
\(b,20,9+20,9\times99\)
\(=20,9\times\left(1+99\right)\)
\(=20,9\times100\)
\(=2090\)
\(c,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2 :
\(a,45-5\times\left(y+1\right)=10\)
\(5\times\left(y+1\right)=45-10\)
\(5\times\left(y+1\right)=35\)
\(y+1=35\div5\)
\(y+1=7\)
\(y=7-1\)
\(y=6\)
\(b,y\div2+y\div2=15\)
\(y\times\frac{1}{2}+y\times\frac{1}{2}=15\)
\(2\times\left(y\times\frac{1}{2}\right)=15\)
\(y=15\)
Học tốt
(x+1)+ (x+3) + (x+5)+.....+(x+99) = 0
x+1 + x+3 +x+5 +....+x+99 =0
Có số số hạng x là : (99-1):2+1= 50 số
Ta có: 50x + ( 1+3+5+...+99) = 0
Đặt A= 1+3+5+...+99
Tổng A là: (99+1).50:2= 2500
=> 50x + 2500 = 0
50x = 0-2500
50x= -2500
x= -2500 :50
x= -50
Vậy...
a) xy - 3x =-19
x(y-3) = -19
=> y-3 \(\in\)Ư(-19) ={ 1; 19; -19 ; -1}
=> y \(\in\){ 4; 22; -16; 2}
Sau bn lập bảng tìm x nha
b) 3x + 4y - xy = 16
3x + y(4-x) =16
12 - [ 3x+ y(4-x)] =12-16
12 - 3x - y(4-x)= -4
3(4-x)- y(4-x) = -4
(3-y) ( 4-x) =-4
Sau bn lập bảng tìm xy nha
Nguồn phần b là của bn Tài nha :>
Bài 1 :
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Có tất cả các số số hạng là : \(\left(99-1\right)\div2+1=50\) ( số )
\(x+1+x+3+x+5+...+x+99=0\)
\(x+x+...+x+1+3+...+99=0\)
\(\left(x\times50\right)+\left[\left(99+1\right)\times50\div2\right]=0\)
\(\left(x\times50\right)+\left(100\times50\div2\right)=0\)
\(\left(x\times50\right)+\left(5000\div2\right)=0\)
\(\left(x\times50\right)+2500=0\)
\(x\times50=0-2500\)
\(x\times50=-2500\)
\(x=-2500\div50\)
\(x=-50\)
Bài 2 :
a ) \(xy-3x=-19\)
\(\Leftrightarrow\)\(x,y\inℤ\)và \(y-3\) \(\inƯ\)\(\left(-19\right)\)\(\in\)\(\left\{1;-1;19;-19\right\}\)
Ta có bảng sau
x | - 19 | 19 | - 1 | 1 |
y - 3 | 1 | - 1 | 19 | - 19 |
y | 4 | 2 | 22 | - 16 |
Vậy \(\left(x;y\right)\) \(\in\) \(\left\{\left(-19;4\right);\left(19;2\right);\left(-1;22\right);\left(1;-16\right)\right\}\)
b ) \(3x+4y-xy=16\)
\(\Leftrightarrow3x+4y-xy-12=16-12\)
\(\Leftrightarrow\left(3x-xy\right)+\left(4y-12\right)=4\)
\(\Leftrightarrow x\left(3-y\right)+4\left(-y\right)+3=4\)
\(\Leftrightarrow\left(3-y\right)\left(x+4\right)=4\)
\(\Leftrightarrow\)\(x;y\)\(\inℤ\)\(\Rightarrow\)\(3-y\) và \(x+4\)\(\in\)\(Ư\)\(\left(4\right)\)=
Ta có bảng sau :
x + 4 | 1 | - 1 | 2 | - 2 | 4 | - 4 |
x | - 3 | - 5 | - 2 | - 6 | 0 | - 8 |
y - 3 | 4 | - 4 | 2 | - 2 | 1 | - 1 |
y | 7 | - 1 | 5 | 1 | 4 | 2 |
Vậy \(\left(x;y\right)\)\(\in\)\(\left\{\left(-3;7\right);\left(-5;-1\right);\left(-2;5\right);\left(-6;1\right);\left(0;4\right);\left(-8;2\right)\right\}\)
a,(2x-1)3 =23+102 b,(3x+1)+(3x+3)+...+(3x+99)=2800
(2x-1)3 =125 3x+1+3x+3+...+3x+99=2800
(2x-1)3=53 ( 3x+3x+.....+3x )+(1+3+...+99)=2800
2x-1=5 gọi A=3x+3x+...+3x ; B=1+3+...+99
2x=5+1 số số hạng của B là : (99-1):2+1=50 ( bằng số số hạng của A)
2x=6 B = (99+1) x 50:2
=2500
x=6:2 ta có: 150x + 2500=2800
x=3 150x=2800-2500
vậy x=3 150x=300
x=300:150
x=2
vậy x=2
99 - 3.(y + 1) = 45
3.(y + 1) = 99 - 45
3.(y + 1) = 54
y + 1 = 54: 3
y + 1 = 18
y = 18 - 1
y = 17
\(99-3\times\left(y+1\right)=45\\ \Rightarrow3x\left(y+1\right)=54\\ \Rightarrow y+1=18\\ \Rightarrow y=17.\)