Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)(1)
ĐKXĐ: \(\hept{\begin{cases}x+9\ne0\\x+10\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-9\\x\ne-10\end{cases}}}\)
(1)\(\Leftrightarrow\frac{9.\left(x+9\right)}{90}+\frac{10.\left(x+10\right)}{90}=\frac{9.\left(x+9\right)}{\left(x+9\right)\left(x+10\right)}+\frac{10.\left(x+10\right)}{\left(x+9\right)\left(x+10\right)}\)
\(\Leftrightarrow9.\left(x+9\right)+10.\left(x+10\right)=9.\left(x+9\right)+10.\left(x+10\right)\)
\(\Leftrightarrow9x+81+10x+100=9x+81+10x+100\)
\(\Leftrightarrow9x+10x-9x-10x=81+100-81-100\)
\(\Leftrightarrow0x=0\)
\(\Rightarrow x\in R\)trừ -9 và -10
a, Đặt : \(C=1+5+5^2+5^3+...+5^9\)
\(\Leftrightarrow5C=5+5^2+5^3+5^4+...+5^{10}\)
\(\Leftrightarrow5C-C=5^{10}-1\)
\(\Leftrightarrow4C=5^{10}-1\)
\(\Leftrightarrow C=\frac{5^{10}-1}{4}\)
Ta có mẫu là :
\(\frac{5^9-1}{4}\)
Đặt vào A ta đc
\(A=\frac{1+5+5^2+5^3+...+5^9}{1+5+5^2+5^3+...+5^8}\)
\(\Leftrightarrow A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}\)
\(\Leftrightarrow\frac{5^{10}-1}{5^9-1}\)
Vậy ...
Tương tự a , ta có
\(B=\frac{\frac{3^{10}-1}{2}}{\frac{3^9-1}{2}}\)
\(\Leftrightarrow B=\frac{3^{10}-1}{3^9-1}\)
Vậy ...
\(\Rightarrowđpcm\)
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)
c)\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Rightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow2x+\frac{3}{5}=\pm\frac{3}{5}\)
- Với \(2x+\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow2x=0\Rightarrow x=0\)
- Với \(2x+\frac{3}{5}=-\frac{3}{5}\)
\(\Rightarrow2x=-\frac{6}{5}\Rightarrow x=-\frac{3}{5}\)
a)x=10
b)x=61/114
c)x=0
d)sai cái gì đó
Đáp án là gì nhưng lời giải ???????
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(19^{5^{1^{8^{9^0}}}}=19^5;2^{9^{1^{9^{6^9}}}}=2^9\)
195=194.19=...1.19=...9
29=24.24.2=16.16.2=...2
=>195+29 có tận cùng là 1
vậy chữ số tận cùng của \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)là 1
\(\left(\dfrac{9}{5}\right)^7:\left(\dfrac{9}{5}\right)^2=\left(\dfrac{9}{5}\right)^2a-1\)
\(\Leftrightarrow a\cdot\dfrac{81}{25}-1=\left(\dfrac{9}{5}\right)^5\)
\(\Leftrightarrow a\cdot\dfrac{81}{25}=\dfrac{59049}{3125}+1=\dfrac{62174}{3125}\)
\(\Leftrightarrow a=\dfrac{686}{1125}\)
(95)7:(95)2=(95)2a−1(95)7:(95)2=(95)2a−1
=a⋅8125−1=(95)5⇔a⋅8125−1=(95)5
=a⋅8125=590493125+1=621743125=a⋅8125=590493125+1=621743125
=a=6861125