K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề yêu cầu?

6 tháng 3 2020

Giải phương trình

13 tháng 7 2017

a, \(\left(x+3\right)^3-\left(x+2\right)\left(x-2\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-\left(x^2-4\right)-6x^2-20\)

\(=x^3+9x^2+27x+27-x^2+4+6x^2+20\)

\(=x^3+14x^2+27x+51\)

b, \(\left(2x+3\right)\left(4x^2-6x+9\right)-\left(2x-3\right)\left(4x^2+6x+9\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+18-\left(8x^3+12x^2+18x-12x^2-18x-18\right)\)

\(=8x^3+18-8x^3+18=36\)

c, \(\left(2x-1\right)\left(4x^2+2x+1\right)\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=\left(8x^3+4x^2+2x-4x^2-2x-1\right)\left(8x^3-4x^2+2x+4x^2-2x+1\right)\)

\(=\left(8x^3-1\right)\left(8x^3+1\right)=\left(8x^3\right)^2-1\)

\(=64x^5-1\)

d, \(\left(x+4\right)\left(x^2-4x+16\right)-\left(50+x^2\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64-50-x^2\)

\(=x^3-x^2+14\)

Chúc bạn học tốt!!!

13 tháng 7 2017

Cảm ơn nha !!!

24 tháng 8 2018

a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)+3\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+3x^2+2x+1=x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x+3x^2+2x-x^3=1-1+8\)
\(\Leftrightarrow5x=8\)
\(\Leftrightarrow x=\dfrac{8}{5}\)
Vậy \(S=\left\{\dfrac{8}{5}\right\}\)

b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-8\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-6=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-6=0\Leftrightarrow x=6\)
Vậy \(S=\left\{2;6\right\}\)

c) \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x-11=0\)
:) \(x-2=0\Leftrightarrow x=2\)
:) \(x-11=0\Leftrightarrow x=11\)
Vậy \(S=\left\{2;11\right\}\)
(d ko bít lèm)
#IDOL

24 tháng 8 2018

IDOL

4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

30 tháng 9 2017

a) x2 - 2x - 4y2 - 4y

= (x2 - 4y2) - (2x + 4y)

= (x + 2y)(x - 2y) - 2(x + 2y)

= (x + 2y)(x - 2y - 2)

= (x + 2y)[x - 2(y + 1)]

b) x4 + 2x3 - 4x - 4

= (x4 - 4) + ( 2x3 - 4x)

= (x2 - 2)(x2 + 2) + 2x(x2 - 2)

= (x2 - 2)(x2 + 2 + 2x)

c) x3 + 2x2y - x -2y

= (x3 - x) + (2x2y - 2y)

= x(x2 - 1) + 2y(x2 - 1)

= (x + 2y)(x2 - 1)

6 tháng 9 2020

1. (x + 2)(x2 - 2x + 4) - (x3 + 2x2) = 5

=> x(x2 - 2x + 4) + 2(x2 - 2x + 4) - x3 - 2x2 - 5 = 0

=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 - 2x2 - 5 = 0

=> (x3 - x3) + (-2x2 + 2x2 - 2x2) + (4x - 4x) + (8 - 5) = 0

=> -2x2 + 3 = 0

=> -2x2 = -3

=> x2 = 3/2

=> x = \(\pm\sqrt{\frac{3}{2}}\)

2. \(\left(x+5\right)^2-6=0\)

=> x2 + 10x + 25 - 6 = 0

=> x2 + 10x + 19 = 0

=> x vô nghiệm(do mình không để căn nên ghi vô nghiệm thôi nhá)

3. \(\left(x+3\right)\left(x^2-3x+9\right)-x^3=2x\)

=> x(x2 - 3x + 9) + 3(x2 - 3x + 9) - x3 - 2x = 0

=> x3 - 3x2 + 9x + 3x2 - 9x + 27 - x3 - 2x = 0

=> (x3 - x3) + (-3x2 + 3x2) + (9x - 9x - 2x) + 27 = 0

=> -2x + 27 = 0

=> -2x = -27

=> x = 27/2

4. \(\left(x-2\right)^3-x^3+6x^2=7\)

=> x3 - 6x + 12x - 8 - x3 + 6x2 = 7

=> (x3 - x3) + (-6x2 + 6x2) + 12x - 8 = 7

=> 12x - 8 = 7

=> 12x = 15

=> x = 5/4

5. \(3\left(x-2\right)^2+9\left(x-1\right)-3\left(x^2+x-3\right)=12\)

=> 3x2 - 12x + 12 + 9x - 9 - 3x2 - 3x + 9 = 12

=> (3x2 - 3x2) + (-12x + 9x - 3x) + (12 - 9 + 9) = 12

=> -6x + 12 = 12

=> -6x = 0

=> x = 0

6. \(\left(4x+3\right)^2-\left(4x-3\right)^2-5x-2=0\)

=> 48x - 5x - 2 = 0

=> 43x - 2 = 0

=> 43x = 2

=> x = 2/43

Còn bài cuối tự làm :>

6 tháng 9 2020

Anh Sang làm cầu kì quá ;-;

1. ( x + 2 )( x2 - 2x + 4 ) - ( x3 + 2x2 ) = 5

<=> x3 + 8 - x3 - 2x2 = 5

<=> 8 - 2x2 = 5

<=> 2x2 = 3

<=> x2 = 3/2

<=> \(x^2=\left(\pm\sqrt{\frac{3}{2}}\right)^2\)

<=> \(x=\pm\sqrt{\frac{3}{2}}\)

2. ( x + 5 )2 - 6 = 0

<=> ( x + 5 )2 - ( √6 )2 = 0

<=> ( x + 5 - √6 )( x + 5 + √6 ) = 0

<=> \(\orbr{\begin{cases}x+5-\sqrt{6}=0\\x+5+\sqrt{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-5\\x=-\sqrt{6}-5\end{cases}}\)

3. ( x + 3 )( x2 - 3x + 9 ) - x3 = 2x

<=> x3 + 27 - x3 = 2x

<=> 27 = 2x

<=> x = 27/2

4. ( x - 2 )3 - x3 + 6x2 = 7

<=> x3 - 6x2 + 12x - 8 - x3 + 6x2 = 7

<=> 12x - 8 = 7

<=> 12x = 15

<=> x = 15/12 = 5/4

5. 3( x - 2 )2 + 9( x - 1 ) - 3( x2 + x - 3 ) = 12

<=> 3( x2 - 4x + 4 ) + 9x - 9 - 3x2 - 3x + 9 = 12

<=> 3x2 - 12x + 12 + 6x - 3x2 = 12

<=> -6x + 12 = 12

<=> -6x = 0

<=> x = 0

6. ( 4x + 3 )2 - ( 4x - 3 )2 - 5x - 2 = 0

<=> 16x2 + 24x + 9 - ( 16x2 - 24x + 9 ) - 5x - 2 = 0

<=> 16x2 + 24x + 9 - 16x2 + 24x - 9 - 5x - 2 = 0

<=> 43x - 2 = 0

<=> 43x = 2

<=> x = 2/43

7, ( 4x + 7 )( 2 - 3x ) - ( 6x + 2 )( 5 - 2x ) = 0

<=> -12x2 - 13x + 14 - ( -12x2 + 26x + 10 ) = 0

<=> -12x2 - 13x + 14 + 12x2 - 26x - 10 = 0

<=> -39x + 4 = 0

<=> -39x = -4

<=> x = 4/39

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)

b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)

c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)

\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)

\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)

d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)

\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)