![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(5x + 1)2 = 36/49
=> (5x + 1)2 = (6/7)2
=> \(\orbr{\begin{cases}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{cases}}\)
Làm từ phần b nha
b) \(\left(x-\frac{1}{9}\right)^3=\frac{2}{3}^6\)
\(\Rightarrow\left(x-\frac{2}{9}\right)^3=\left(\frac{1}{3}\right)^6\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1^6}{3^6}\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{3^6}\)
\(\Rightarrow\left(x-\frac{2}{3}\right)^3=\frac{1}{729}\)
\(\Rightarrow x-\frac{2}{9}=\frac{1}{9}\)
\(x=\frac{1}{9}+\frac{2}{9}\)
\(x=\frac{3}{9}=\frac{1}{3}\)
c) Sai đề rồi, xem lại đi
d) \(\left(x-3,5\right)^2+\left(y-\frac{1}{10}\right)^4< 0\)
\(\Rightarrow\frac{10000y^4-4000y^3+600y^3-40y+10000x^2+122501-70000x}{10000}< 0\)
=> Sai \(\forall y\inℝ\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)a)34-26-54=81-64-625=-608
ko hiểu b
2)a)(3x-1)2=(5/6)2=(-5/6)2
+)3x-1=5/6 =>x=11/18
+)3x-1=-5/6 =>x=1/18
b)(x+7)x-11(1-(x-7)23)=0
=>+)(x+7)x-11=0 =>x+7=0 =>x=-7
+)1-(x+7)23=0 =>(x+7)23=1 =>x+7=1 =>x=-6
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ,( x2 -5 ) x ( x2 +9) x( -11-8x) =0
=> x2 -5 = 0 ; x2 + 9 = 0 hoặc -11-8 x =0 .
- => x2 = 5 ; x2 = -9 hoặc x = \(\frac{-11}{8}\)=> x = +\(\sqrt{5}\)và -\(\sqrt{5}\)hoặc x=\(\frac{-11}{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)=>\(\left(2x+1\right)^2=\frac{1}{9}\)
\(=>\left(2x+1\right)^2=\frac{1}{3^2}\)
\(=>2x+1=\frac{1}{3}\)
\(=>2x=\frac{1}{3}-1\)
\(=>2x=\frac{-2}{3}\)
\(=>x=\frac{-2}{3}:2\)
\(=>x=\frac{-1}{3}\)
Vậy x = \(-\frac{1}{3}\)
b)\(=>\left(x-2\right)^3=27\)
\(=\left(x-2\right)^3=3^3\)
\(=>x-2=3\)
\(=>x=3+2\)
\(=>x=5\)
Vậy x = 5
c)=>x.x-x=0
TH1:\(\hept{\begin{cases}x.x=0\\x=0\end{cases}}\)\(=>\hept{\begin{cases}x=0\\x=0\end{cases}}\)
TH2:\(x.x=1.x=>x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d)\(x^4=27.x\)
\(=>x^4-27x=0\)
\(=>x^4-\left[\left(3\right)^3.x\right]=0\)
\(=>x^3.x-3^3.x=0\)
\(=>x.\left(x^3-3^3\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x^3-3^3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x^3=3^3\end{cases}=>\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
X khong thể bằng (-3) được
Vậy x \(\in\){0;3}
a) Ta có: \(\left(2x+1\right)^2-\frac{1}{9}=0\)
\(\left(2x+1\right)^2=\frac{1}{9}\)
mà \(\frac{1}{9}=\left(\frac{1}{3}\right)^2=\left(-\frac{1}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+1=\frac{1}{3}\\2x+1=-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-\frac{2}{3}\\2x=-\frac{4}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{3};-\frac{2}{3}\right\}\)
b) (x-2)3 + 27 = 0
(x-2)3 = -27
mà -27=(-3)3
=> x-2=-3
=> x= -1
c)Ta có: x2 - x = 0
x . (x-1) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(x\in\left\{0;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(x^2=5\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
vậy .....
b/ \(x^2-9=0\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=3^2\\x^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy .......( nhầm cái ngoặc)
c/ \(x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
Mà \(x^2\ge0\Leftrightarrow x\in\varnothing\)
Vậy ....
d/ \(\left(x-1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=3^2\\\left(x-1\right)^2=\left(-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
Vậy ...
e/ \(\left(2x+3\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x+3\right)^2=5^2\\\left(2x+3\right)^2=\left(-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy .....
f/ Ta có :
\(x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1^2\\x^2=\left(-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
\(x^2=5\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
\(\left(x-1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(x^2-9=0\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(\left(2x+3\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\)
\(x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
6x=3y=2z nên 6x/6=3y/6=2z/6
=>x/1=y/2=z/3=k
=>x=k; y=2k; z=3k
\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\right)^2\)
\(=\left(k+2k+3k\right)\cdot\left(\dfrac{1}{k}+\dfrac{4}{2k}+\dfrac{9}{3k}\right)^2\)
\(=6k\cdot\left(\dfrac{1}{k}+\dfrac{2}{k}+\dfrac{3}{k}\right)^2=6k\cdot\dfrac{36}{k^2}=\dfrac{6}{k}\)
9x2 - 36=0
=> 9x2 = 36
=> x2 =4
Trường hợp 1: x2 = 22
=> x= 2
Trường hợp 2: x2 = (-2)2
=> x= -2
Vậy x = 2 hoặc x = -2
------------------------------------
(x-4)2 = 1/9
Trường hợp 1: (x-4)2 =(1/3)2
=> x- 4=1/3
=> x= 1/3 +4
=> x= 13/3
Trường hợp 2: (x-4)2 =(-1/3)2
=> x- 4=-1/3
=> x= -1/3 + 4
=> x= 11/3
Vậy x = 13/3 hoặc x = 11/3
9.x^2-36=0
=>9.x^2=36
x^2=36:9
x^2=4
=>x^2=-2^2 hoặc là 2^2 =>x=-2 hoặc 2
(x-4)^2=1/9
(x-4)^2=(-1/3)^2 hoặc là (1/3)^2 =>x-4 bằng -1/3 hoặc là 1/3
=>x=11/3 hoặc 13/3
Hc tốt