Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3
a)4x-1+5.4x-2=576
=> 4x-1(1+5.\(4^{-1}\))=576
=> 4x-1.\(\dfrac{9}{4}\)=576
=> 4x-1=256=44
=> x-1=4
=> x=5
b) (2x-1)6=(2x-1)8
=> (2x-1)6 - (2x-1)8=0
=> (2x-1)6(1- (2x-1)2)=0
=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)
Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)
c) (2x-5)2000+(3y+4)2002 \(\le0\)
Có (2x-5)2000\(\ge\)0 với mọi x
(3y+4)2002\(\ge\)0 với mọi y
=> (2x-5)2000+(3y+4)2002 \(\ge\) 0
=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0
=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)
Bài 2:
Có A=2100-299+298-...+22-2
=> 2A=2(2100-299+298-...+22-2)
=> 2A= 2101-2100+299-...+23-22
=> 2A= 2101-2100+299-...+23-22
+A= 2100-299+298-...+22-2
=> 3A= 2101-2
=> A=\(\dfrac{2^{101}-2}{3}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
a
(4x+7)2 = 25/36
(4x+7)2 = (5/6)2
==> 4x+7=5/6
4x=5/6-7=-37/6
x=-37/6:4=-37/24
b
(5+2x)3 = 8
(5+2x)3 = 23
==> 5+2x=2
2x=2-5=-3
x=-3:2=-1,5
c
3x.9=243
3x.32=35
3x=35:32
3x=33
3x=27 ==> x=27:3=9
d
42x = (-64).(-4)
42x = 43.41 = 44
==> 2x = 4
x = 4:2=2
Tick giúp mình nhe ahihi ^_^
b) \(3^{x+1}=9^x=3^{2x}\)
\(\Rightarrow x+1=2x\Leftrightarrow x=1\)
c) \(2^{3x+2}=4^x+5\Leftrightarrow4^{2x+1}=4^{x+5}\)
\(\Rightarrow2x+1=x+5\)\(\Rightarrow x=4\)
d) \(3^{2x-1}=243=3^5\)
\(\Rightarrow2x-1=5\Rightarrow x=3\)
\(5^{x+2}+5^{x+3}=750\)
\(5^x.5^2+5^x.5^3=750\)
\(5^x.25+5^x\cdot125=750\)
\(5^x.\left(25+125\right)=750\)
\(5^x.150=750\)
\(5^x=750:150\)
\(5^x=5\)
\(5^x=5^1\)
\(\Rightarrow x=1\)
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
b) \(\left(3x-2\right)^5=-243\)
\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)
c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)
Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)