Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Để (*)63* chia hết cho 2,5 => * = 0
Để (*)630 chia hết cho 3 => (*) + 6 + 3 + 0 chia hết cho 3
=> (*) + 9 chia hết cho 3 => (*) ∈{0;3;6;9}
Để (*)630 chia hết cho 9 => (*) + 6 + 3 + 0 chia hết cho 9
=> (*) + 9 chia hết cho 9 => (*) = 9
Vậy các số có thể thỏa mãn là: 630;3630;6630;9630
b)
a , Vì 10^15 = 10 x 10 x 10 x ... x10 : tức là có 15 số 10 nhân lại nên tổng của các chữ số là : 1 + 1 + ... + 1 = 15
Ta có : 15 : 9 = 1 dư 6
15 : 3 = 5 ( không dư )
Vậy 10^15 : 9 dư 6 ; chia 3 không dư
b, Vì 10^11 = 10 x 10 x 10 x 10 x ... x 10 : tức là có 11 số 10 nhân lại nên tổng của tất cả các chữ số là : 1 + 1 + ... + 1 = 11
Ta có : 11 : 9 = 1 dư 2
11 : 3 = 3 dư 2
Vậy 10^11 : 9 dư 2 ; Chia 3 dư 2
t i c k mình :D
a, 10^15 chia 9 dư 1
10^15 chia 3 dư 1
b, 10^11 chia 9 dư 1
10^11 chia 3 dư 1
k mk nha
a, Tổng các chữ số của 101234 + 2 = 1 + 0 + 0 +...+ 2 => 101234 chia hết cho 3.
b, Tổng các chữ số của 10789 + 8 = 1 + 0 + 0 +...+ 8 => 10789 chia hết cho 9
9x\(^2\)+x+\(\frac{1}{2}\)
=[9x\(^2\)+x+(\(\frac{1}{6}\))\(^2\)]+\(\frac{1}{2}\)-\(\frac{1}{36}\)
=(3x+\(\frac{1}{6}\))\(^2\)+\(\frac{17}{36}\)
Mà (3x+\(\frac{1}{6}\))\(^2\)\(\ge\)0
Nên(3x+\(\frac{1}{6}\))\(^2\)+\(\frac{17}{36}\)\(\ge\)\(\frac{17}{36}\)
Vậy GTNN của bt trên là \(\frac{17}{36}\)
Dấu"=" xảy ra khi 3x+\(\frac{1}{6}\)=0
x=\(\frac{-1}{18}\)
Ta có:
263^1996 = 263^4*499 = (263^4)^499 = (...1)^499 = (...1)
9^1990 = 9^2*995 = (9^2)^995 = 81^995 = (...1)
\(\Rightarrow\)263^1996 - 9^1990 = (...1) - (...1) = (...0) \(⋮\)10 (1)
Mà 10 = 2*5, (2,5) = 1 (2) nên từ (1) và (2) suy ra (...0) chia hết cho 2 và 5 hay 263^1996 - 9^1990 chia hết cho 2 và 5.
1) Ta có: \(n^2+n+17=n.\left(n+1\right)+17\)
- Để \(n^2+n+17⋮n+1\)\(\Rightarrow\)\(n.\left(n+1\right)+17⋮n+1\)mà \(n.\left(n+1\right)⋮n+1\)
\(\Rightarrow\)\(17⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(17\right)\in\left\{\pm1;\pm17\right\}\)
- Ta có bảng giá trị:
\(n+1\) | \(-1\) | \(1\) | \(-17\) | \(17\) |
\(n\) | \(-2\) | \(0\) | \(-18\) | \(16\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-18,-2,0,16\right\}\)
2) Ta có: \(9-n=\left(-n+3\right)+6=-\left(n-3\right)+6\)
- Để \(9-n⋮n-3\)\(\Rightarrow\)\(-\left(n-3\right)+6⋮n-3\)mà \(-\left(n-3\right)⋮n-3\)
\(\Rightarrow\)\(6⋮n-3\)\(\Rightarrow\)\(n-3\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(n-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(n\) | \(2\) | \(4\) | \(1\) | \(5\) | \(0\) | \(6\) | \(-3\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-3,0,1,2,4,5,6,9\right\}\)
1) n2 + n + 17 = n(n+1) +17 chia hết cho n + 1
=>17 phải chia hết cho n + 1
=> n + 1 thuộc ước 17 ={1;-1;17;-17}
=> n thuộc {0;16;-2;-18}
Vậy có 4 giá trị n thỏa mãn đề bài
2)9-n = 6 -(n-3) chia hết cho n - 3
=> n - 3 thuộc ước 6 = {1;-1;2;-2;3;-3;6;-6}
=> n thuộc {4;2;5;1;6;0;9;-3}
Vậy có 6 giá trị n thỏa mãn đề bài
F = 1 + 3 + 32 + 33 + ..... + 399
F = 30 + 31 + 32 + 33 + ... + 399
F = ( 30 + 31 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + .... + ( 396 + 397 + 398 + 399 )
F = 30( 1 + 31 + 32 + 33 ) + 34 ( 1 + 31 + 32 + 34 ) + ..... + 396( 1 + 31 + 32 + 33 )
F = 30 * 40 + 34 * 40 +....... + 396 * 40
F = 40 ( 30 + 34 + ..... + 396 )
có 40 chí hết cho 40
=> F chia hết cho 40
k đúng cho mk cả 2 lần trả lời nha
E = 109 + 108 + 107
E = 107( 102 + 10 + 1 )
E = 107 * 111
E = 106 * 10 * 111
E = 106 * 5 * 2 * 111
E = 106 * 5 * 222
có 222 chia hết cho 222 => 106 * 5 * 222 chia hết cho 222
=> 109 + 108 + 107 chí hết cho 222