Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 5x - 4)(4x + 6)=0
<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)
Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)
b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0
<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)
Vậy S = \(\left\{2;3\right\}\)
c) ( 4x - 10 )( 24 + 5x ) = 0
<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)
Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)
d) ( x - 3 )( 2x + 1 ) = 0
<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)
e) ( 5x - 10 )( 8 - 2x ) = 0
<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy S = \(\left\{2;4\right\}\)
f) ( 9 - 3x )( 15 + 3x ) = 0
<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{3;-5\right\}\)
Học tốt nhaaa !
\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)
\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)
\(\Leftrightarrow-15x+18x+7+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow x=\frac{-34}{3}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)
1) Ta có: 3x-12=5x(x-4)
\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3x-12-5x^2+20x=0\)
\(\Leftrightarrow-5x^2+23x-12=0\)
\(\Leftrightarrow-5x^2+20x+3x-12=0\)
\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)
2) Ta có: 3x-15=2x(x-5)
\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)
3) Ta có: 3x(2x-3)+2(2x-3)=0
\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)
4) Ta có: (4x-6)(3-3x)=0
\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)
4) (4x - 6 ) ( 3 - 3x ) = 0
<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)
Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)
\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)
Vậy phương trình trên có nghiệm là \(2\)
\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)
Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)
\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)
Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)
\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)
Vậy phương trình trên có nghiệm là \(7\)
nhẩm có a-b+c-d+e=0 => pt có no x=-1. or c bấm mt để nhẩm no. sau đó chia pt đầu cho x+1 để tách nhân tử đk
\(\left(x+1\right)^2\left(x^2+x+1\right)=0\)
cai nay dug 100%
\(3\left(3x-1\right)=3x+5\)
\(\Leftrightarrow9x-3=3x+5\)
\(\Leftrightarrow9x-3-3x-5=0\)
\(\Leftrightarrow6x-8=0\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{4}{3}\right\}\)
| x - 3 | + 3x = 15
TH1 : x < 3
Pt <=> -( x - 3 ) + 3x = 15
<=> -x + 3 + 3x = 15
<=> 2x + 3 = 15
<=> 2x = 12
<=> x = 6 ( không tmđk )
TH2: x ≥ 3
Pt <=> x - 3 + 3x = 15
<=> 4x - 3 = 15
<=> 4x = 18
<=> x = 18/4 = 9/2 ( tmđk )
Vậy phương trình có nghiệm duy nhất là x = 9/2
\(|x-3|+3x=15\)
\(th1\left(x< 3\right):pt\Leftrightarrow-\left(x-3\right)+3x=15\)
\(\Leftrightarrow-x+3+3x=15\)
\(\Leftrightarrow2x=15-3=12\)
\(\Leftrightarrow x=\frac{12}{2}=6\left(ktm\right)\)
\(th2\left(x\ge3\right):pt\Leftrightarrow x-3+3x=15\)
\(\Leftrightarrow4x-3=15\)
\(\Leftrightarrow4x=15+3=18< =>x=\frac{9}{2}\left(tm\right)\)
Vậy ...
\(\left(9-3x\right)\left(15+3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}9-3x=0\\15+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-3x=-9\\3x=-15\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy...
(9-3x)(15+3x)=0
<=> \(\orbr{\begin{cases}9-3x=0\\15+3x=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vay pt co 2 \(n_0\)\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)