K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(9-3x\right)\left(15+3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9-3x=0\\15+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-3x=-9\\3x=-15\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

Vậy...

31 tháng 3 2020

(9-3x)(15+3x)=0

<=> \(\orbr{\begin{cases}9-3x=0\\15+3x=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

Vay pt co 2 \(n_0\)\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

18 tháng 3 2020

a) ( 5x - 4)(4x + 6)=0

<=> \([^{5x-4=0}_{4x+6=0}< =>[^{x=\frac{4}{5}}_{x=\frac{-6}{4}}\)

Vậy S = \(\left\{\frac{4}{5};\frac{-6}{4}\right\}\)

b) ( 3,5x - 7 )( 2,1x - 6,3 ) = 0

<=> \([^{3,5x-7=0}_{2,1x-6,3=0}< =>[^{x=2}_{x=3}\)

Vậy S = \(\left\{2;3\right\}\)

c) ( 4x - 10 )( 24 + 5x ) = 0

<=> \([^{4x-10=0}_{24+5x=0}< =>[^{x=\frac{5}{2}}_{x=\frac{-24}{5}}\)

Vậy S = \(\left\{\frac{5}{2};\frac{-24}{5}\right\}\)

d) ( x - 3 )( 2x + 1 ) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy S = \(\left\{3;\frac{-1}{2}\right\}\)

e) ( 5x - 10 )( 8 - 2x ) = 0

<=> \(\left[{}\begin{matrix}5x-10=0\\8-2x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy S = \(\left\{2;4\right\}\)

f) ( 9 - 3x )( 15 + 3x ) = 0

<=> \(\left[{}\begin{matrix}9-3x=0\\15+3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy S = \(\left\{3;-5\right\}\)

Học tốt nhaaa !

18 tháng 3 2020

Cảm ơn bn

9 tháng 2 2020

\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)

\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)

\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)

\(\Leftrightarrow-15x+18x+7+27=0\)

\(\Leftrightarrow3x+34=0\)

\(\Leftrightarrow x=\frac{-34}{3}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)

1) Ta có: 3x-12=5x(x-4)

\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3x-12-5x^2+20x=0\)

\(\Leftrightarrow-5x^2+23x-12=0\)

\(\Leftrightarrow-5x^2+20x+3x-12=0\)

\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)

2) Ta có: 3x-15=2x(x-5)

\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)

3) Ta có: 3x(2x-3)+2(2x-3)=0

\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)

4) Ta có: (4x-6)(3-3x)=0

\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)

10 tháng 2 2020

4) (4x - 6 ) ( 3 - 3x ) = 0

<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

11 tháng 2 2020

\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)

Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)

\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)

Vậy phương trình trên có nghiệm là \(2\)

\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)

\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)

Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)

\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)

Vậy phương trình trên có nghiệm là \(7\)

21 tháng 7 2015

nhẩm có a-b+c-d+e=0 => pt có no x=-1. or c bấm mt để nhẩm no. sau đó chia pt đầu cho x+1 để tách nhân tử đk

\(\left(x+1\right)^2\left(x^2+x+1\right)=0\)

cai nay dug 100%

21 tháng 7 2015

nnnnnn                           

7 tháng 2 2020

\(3\left(3x-1\right)=3x+5\)

\(\Leftrightarrow9x-3=3x+5\)

\(\Leftrightarrow9x-3-3x-5=0\)

\(\Leftrightarrow6x-8=0\)

\(\Leftrightarrow x=\frac{4}{3}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{4}{3}\right\}\)

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
17 tháng 8 2020

| x - 3 | + 3x = 15

TH1 : x < 3

Pt <=> -( x - 3 ) + 3x = 15

    <=> -x + 3 + 3x = 15

    <=> 2x + 3 = 15

    <=> 2x = 12

    <=> x = 6 ( không tmđk )

TH2: x ≥ 3

Pt <=> x - 3 + 3x = 15

     <=> 4x - 3 = 15

     <=> 4x = 18

     <=> x = 18/4 = 9/2 ( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 9/2

17 tháng 8 2020

\(|x-3|+3x=15\)

\(th1\left(x< 3\right):pt\Leftrightarrow-\left(x-3\right)+3x=15\)

\(\Leftrightarrow-x+3+3x=15\)

\(\Leftrightarrow2x=15-3=12\)

\(\Leftrightarrow x=\frac{12}{2}=6\left(ktm\right)\)

\(th2\left(x\ge3\right):pt\Leftrightarrow x-3+3x=15\)

\(\Leftrightarrow4x-3=15\)

\(\Leftrightarrow4x=15+3=18< =>x=\frac{9}{2}\left(tm\right)\)

Vậy ...