Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a,\(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow-2x=-12\)
\(\Leftrightarrow x=6\)
b,\(x\left(4x-4\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x-1=0\)
\(\Leftrightarrow-9x=1\)
\(\Leftrightarrow x=\frac{-1}{9}\)
1) x4 - 81 = (x2 - 9)(x2 + 9)
= (x - 3)(x + 3)(x2 + 9)
2) x5 - 5x3 + 4x
= x(x4 - 5x2 + 4)
= x(x4 - x2 - 4x2 + 4)
= x[x2(x2 - 1) - 4(x2 - 1)]
= x(x2 - 1)(x2 - 4)
= x(x - 1)(x + 1)(x - 2)(x + 2)
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
a) \(12x^3+8x^2-3x-2=4x^2\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(3x+2\right)\left(4x^2-1\right)=\left(3x+2\right)\left(2x-1\right)\left(2x+1\right)\)
b) \(18x^3+27x^2-2x-3=9x^2\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(9x^2-1\right)=\left(2x+3\right)\left(3x-1\right)\left(3x+1\right)\)
c) \(8x^3+4x^2-34x+15=4x^2\left(2x-3\right)+8x\left(2x-3\right)-5\left(2x-3\right)\)
\(=\left(2x-3\right)\left(4x^2+8x-5\right)=\left(2x-3\right)\left(2x-1\right)\left(2x+5\right)\)
a, Đặt \(x^2+4x+8=a,x=b\)
\(\left(a\right)\)\(\Leftrightarrow a^2+3ab+2b^2\)\(=\)\(\left(a+b\right)\left(a+2b\right)\)\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
b, Đặt \(x^2+x+1=t\)
\(\left(b\right)=t.\left(t+1\right)-12=t^2+t-12\)\(=\left(t-3\right)\left(t+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
c, Tương tự câu b
d,
\(\left(d\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+10=t\)
\(\left(d\right)=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(\left(8x+12-4x^2\right):\left(x-3\right)=\left[4x\left(x-3\right)+20\left(x-3\right)+72\right]:\left(x-3\right)=\left[\left(x-3\right)\left(4x+20\right)+72\right]:\left(x-3\right)=4x+20R72\)
CẢM ƠN