Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8^n:2^n=16^n\)
\(\left(2^3\right)^n:2^n=\left(2^4\right)^n\)
\(2^{3n}:2^n=2^{4n}\)
\(\Rightarrow3n-n=4n\)
\(\Rightarrow n\left(3-1\right)=4n\)
\(\Rightarrow n.2=4.n\)
\(\Rightarrow\)không có giá trị n
\(8^n:2^n=16^n\Rightarrow2^{3n}:2^n=2^{4n}\Rightarrow2^{2n}=2^{4n}\)
=> 2n = 4n => n = 2n => n - 2n = 0 => n ( 1 - 2 ) = 0 => - n = 0 => n = 0
sua lai bai cua minh
Neu \(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay \(25=8\left(x-2017\right)^2+y^2\\ =>25=8+y^2\\ =>y^2=17\left(loai\right)\)(do x;y \(\in N\))
Vay \(x=2017;y=5\)
Ta co
\(25-y^2=8\left(x-2017\right)^2\\ =>25=8\left(x-2017\right)^2+y^2\)
Do
\(8\left(x-2017\right)^2\le25\\ =>\left(x-2017\right)^2\le\frac{25}{8}\)
\(=>\left(x-2017\right)^2\in\left\{0;1\right\}\)
Neu
\(\left(x-2017\right)^2=0\\ x-2017=0\\ x=2017\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=y^2\\ =>y=5\)
Neu
\(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=1+y^2\\ =>y^2=24\)(loai do x;y \(\in N\))
Vay x=2017 ; y=5
\(a,\frac{16}{2^n}=2\)
\(\Rightarrow\frac{16}{2^n}=\frac{2}{1}\)
\(\Rightarrow2^n.2=16\)
\(\Rightarrow4^n=4^2\)
\(\Rightarrow n=2\)
\(b,\frac{\left(-3\right)^n}{81}=-27\)
\(\Rightarrow\left(-3\right)^n=81.\left(-27\right)\)
\(\Rightarrow\left(-3\right)^n=-2187\)
\(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\)
\(\Rightarrow n=7\)
a, \(\frac{16}{2^n}=2\)
\(\frac{2^4}{2^n}=2\)
24 : 2 = 2n
2n = 23
n =3
b) 8n :2n =4
(8:2)n = 4
4n = 4
nên n = 1
a) 1/8 . 16n = 2n
1/8 = 2n : 16n
1/8 = ( 2/16 )n
1/8 = ( 1/8 )n
=> n = 1
b) 27 < 3n < 243
33 < 3n < 35
=> n = 4
Ta có: 8n : 2n =23n:2n=23n-n=22n
162017=(24)2017=28068
nên 22n=28068 nêm 2n=8068 nên n=4034
=>82ko17x2;3;4;5;6;...;21;2;3;...=>{1;2;3;4;5;6;..}