Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) ta có: 3n + 10 chia hết cho n + 2
=> 3n + 6 + 4 chia hết cho n + 2
3.(n+2) + 4 chia hết cho n + 2
mà 3.(n+2) chia hết cho n + 2
=> 4 chia hết cho n + 2
=>...
bn tự làm tiếp nha
b) ta có: n2 + 8n + 15 chia hết cho n + 8
=> n.(n+8) + 15 chia hết cho n + 8
mà n.(n+8) chia hết cho n + 8
=> 15 chia hết cho n + 8
...
c) ta có: n2 + 15 + 7n chia hết cho n+1
=> n2 + n + 6n + 6 + 9 chia hết cho n+1
n.(n+1) + 6.(n+1) + 9 chia hết cho n+1
(n+1).(n+6) + 9 chia hết cho n+1
...
a) Ta có : 8n + 193 = ( 8n + 6 ) + 187 = 4 . ( 4n + 3 ) + 187
vì 4 . ( 4n + 3 ) \(⋮\)4n + 3 nên để 8n + 193 \(⋮\)4n + 3 thì 187 \(⋮\)4n + 3
\(\Rightarrow\)4n + 3 \(\in\)Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
Lập bảng ta có :
4n+3 | 1 | 11 | 17 | 187 |
n | -1/2(loại) | 2 | 7/2(loại) | 46 |
Vậy n \(\in\){ 2 ; 46 }
còn lại tương tự
a. 8n+196 chia hết cho 4n+3
=> 8n+6+187 chia hết cho 4n+3
=> 2(4n+3)+187 chia hết cho 4n+3
=> 187 chia hết cho 4n+3
=> 4n+3 thuộc Ư(187) và n là số tự nhiên
=> 4n+3 thuộc {1;11;17;187}
•4n+3=1=> n ko là số tự nhiên
• 4n+3=11=> n=2
•4n+3=17=> n ko là số tự nhiên
•4n+3=187=> n=46
Vậy n=2 hoặc n=46
b. 15 chia hết cho 2n+3
=> 2n+3 thuộc Ư(15)
=> 2n+3 thuộc {1;3;5;15}
•2n+3=1=> n ko là số tự nhiên
•2n+3=3=> n=0
•2n+3=5=> n=1
•2n+3=15=> n=6
Vậy n thuộc {0;1;6}
c. 2n+8 chia hết cho n+2
=> 2(n+2)+4 chia hết cho n+2
=> 4 chia hết cho n+2
=> n+2 thuộc {1;2;4}
•n+2=1=> n ko là số tự nhiên
• n+2=2=>n=0
• n+2=4=> n=2
Vậy n=0 hoặc n=2
a. 3n+17= 3(n+2) + 11
3n+17 chia hết cho n+2 khi 11 chia hết cho n+2 suy ra n+2 là ước của 11= (1;11) xét 2 trường hợp
các bài dưới tương tự nhé
n=2k+1
A=(2k+1)^2+8(2k+1)+15=(2k+1)(2k+1)+16k+8+15
=(4k^2+2k+2k+1)+(16k+23)=4k^2+(2+2+16)k+23+1=4k^2+20k+24=4(k^2+5k+6)
A=4.B
(*) A chia hết cho 4
(**)Ta cần Cm: B= k^2+5k+6 chia hết cho 2
-nếu k chẵn k=2t: B=4t^2+10t+6=2(2t^2+5t+3) chia hết cho 2
-nếu k lẻ k=2t+1; B=(2t+1)^2+5(2t+1)+6=4t^2+4t+1+10t+5+6=4t^2+14t+12=2(2t^2+7t+6) chia hết cho 2
[hoặc lập luận với k lẻ => k^2 &5k đều lẻ tổng hai số lẻ phải chăn=> tổng hai số chẵn phải chẵn=>B chia hết cho 2
(*)&(**) => A chia hết cho 8=> dpcm
Ta có
n^2+8n+15 chia hết cho 8
<=>n^2+3n+5n+15
<=>n(n+3)+5(n+3)
<=>(n+5)(n+3)
=>(n+5) chia hết cho 8(1) , (n+3) chia hết cho 8(2)
Ta có:(1)
(n+5) thuộc B(8)
=> (n+5) thuộc {0;8;16;24;....}
=>n thuộc {-5;3;11;19;...}(3)
n sẽ là số lẻ vì B(8) đều là số chẵn, khi số chẵn trừ đi số lẻ(trừ 5) thì kết quả luôn là số lẻ(3)
Ta có:(2)
=> (n+3) thuộc B(8)
=> (n+3) thuộc {0;8;16;24;....}
=> n thuộc {-3;5;13;21;......}
n sẽ là số lẻ vì B(8) đều là số chẵn, khi số chẵn trừ đi số lẻ(trừ 3) thì kết quả luôn là số lẻ(4)
Từ (3),(4)
=> n là số lẻ
a.4n+3 chia het 3n-5;3n-5 chia het 3n-5=> 4(3n-5 ) chia het 3n-5=>12n-20 chia het cho 3n-5
4n+3 chia het 3n-5 => 3(4n+3) chia het 3n-5 => 12n+9 chia het 3n-5
=>(12n-20)- 12n+9 chia het 3n-5=> 11 chia het 3n-5=>3n-5 chia het 1, 11
3n-5 1 11
n 2 loai
vay n=2
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
\(8n+15=8n+8+7=8\left(n+1\right)+7⋮\left(n+1\right)\Leftrightarrow7⋮\left(n+1\right)\)
mà \(n\)là số nguyên nên \(n+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-8,-2,0,6\right\}\).