
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(1.\)
\(4x^2-12x+9\)
\(=\left(2x\right)^2-12x+3^2=\left(2x-3\right)^2\)
\(2.\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(\left(7x-5\right)\left(x-y\right)\)
\(3.\)
\(x^3-9x\)
\(=x\left(x^2-9\right)\)
\(=x\left(x-3\right)\left(x+3\right)\)
\(4.\)
\(5x\left(x-y\right)-15\left(x-y\right)\)
\(=\left(5x-15\right)\left(x-y\right)\)
\(=5\left(x-3\right)\left(x-y\right)\)
\(5.\)
\(2x^2+x\)
\(=2x\left(x+1\right)\)
\(6.\)
\(x^3+27\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(7.\)
\(2x^2-4xy+2y^2-32\)
\(=2\left(x^2-2xy+y^2-16\right)\)
\(=2\left[\left(x^2-2xy+y^2\right)-16\right]\)
\(=2\left[\left(x-y\right)^2-4^2\right]\)
\(=2\left(x-y+4\right)\left(x-y-4\right)\)
\(8.\)
\(x^3-4x-3x^2+12\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(9.\)
\(2x+2y+x^2-y^2\)
\(=2\left(x+y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+2\right)\)
\(10.\)
\(x^2y-2xy+y\)
\(=y\left(x^2-2x+1\right)\)
\(=y\left(x-1\right)^2\)
\(11.\)
\(y^2+2y\)
\(=y\left(y+2\right)\)
\(12.\)
\(y^2-x^2-6y-6x\)
\(=\left(y-x\right)\left(y+x\right)-6\left(y+x\right)\)
\(=\left(y+x\right)\left(y-x-6\right)\)
\(13.\)
\(x^3-3x\)
\(=x\left(x^2-3\right)\)
\(=x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(14.\)
\(2x-xy+2z-yz\)
\(=x\left(2-y\right)+z\left(2-y\right)\)
\(=\left(2-y\right)\left(x+z\right)\)
Xong

1)
a) \(2x^2-12x+18+2xy-6y\)
\(=2x^2-6x-6x+18+2xy-6y\)
\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)
\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)
\(=\left(x-3\right)\left(2y+2x-6\right)\)
\(=2\left(x-3\right)\left(y+x-3\right)\)
b) \(x^2+4x-4y^2+8y\)
\(=x^2+4x-4y^2+8y+2xy-2xy\)
\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)
\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)
\(=\left(2y+x\right)\left(-2y+x+4\right)\)
2) \(5x^3-3x^2+10x-6=0\)
\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)
Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)
\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)
\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Bài làm
a) 2x2 - 12x + 18 + 2xy - 6y
= 2x2 - 6x - 6x + 18 + 2xy - 6y
= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )
= 2x( y + x - 3 ) - 6( y + x - 3 )
= ( 2x - 6 ) ( y + x - 3 )
# Học tốt #
\(-8+8y^2-6y^4+y^6\)
\(=y^6-6y^4+12y^2-8-4y^2\)
\(=y^6-3.2.\left(y^2\right)^2+3.y^2.2^2-2^3-4y^2\)
\(=\left(y^2-2\right)^3-\left(2y\right)^2\)
Sắp xếp lại ta được
y6 - 6y4 + 8y2 - 8
= ( y2 )3 - 3.( y2 )2.2 + 3.y2.22 - 23 - 4y2
= ( y2 - 2 )3 - 4y2