Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có:\(\begin{matrix}T_1=2\pi\sqrt{\frac{m_1}{k}}\\T_2=2\pi\sqrt{\frac{m_2}{k}}\end{matrix}\)} \(\rightarrow\frac{T_2}{T_1}=\sqrt{\frac{m_2}{m_1}}\)
+ Theo đề bài thời gian con lắc thứ nhất thực hiện 10 dao động bằng thời gian con lắc thứ hai thực hiện 5 dao động: \(\Delta t=10T_1=5T_2\rightarrow\frac{T_2}{T_1}=2\)
+ Từ hai biểu thức trên ta có m2 = 4m1
+ Mặt khác, con lắc gồm hai vật m1 và m2 có chu kì dao động là \(T=2\pi\sqrt{\frac{m_1+m_2}{k}}\rightarrow m_1+m_2=\frac{kT_2}{\left(2\pi\right)^2}=5\)
Giải hệ phương trình ra ta có: m1 = 1 kg; m2 = 4 kg
Đáp án B
- Bước sóng: \(\lambda=\frac{40}{20}=2cm\)
- Trước hết, ta cần tìm các điểm dao động với biên độ 5cm trong khoảng AB.
+ Giả sử điểm M cách A là d dao động với biên độ 5cm (hình vẽ)
A B M d 10-d
+ Nhận xét: \(5^2=3^2+4^2\) nên để M dao động với biên độ 5cm thì sóng do A và B đến M phải vuông pha nhau.
+ Pha dao động do A --> M: \(\varphi_1=\frac{\pi}{6}-\frac{2\pi d}{\lambda}\)
+ Pha dao động do B --> M: \(\varphi_2=\frac{2\pi}{3}-\frac{2\pi\left(10-d\right)}{\lambda}\)
+ Độ lệch pha 2 dao động này: \(\Delta\varphi=\frac{2\pi}{3}-\frac{2\pi\left(10-d\right)}{\lambda}-\left(\frac{\pi}{6}-\frac{2\pi d}{\lambda}\right)=\frac{\pi}{2}+\frac{2\pi\left(2d-10\right)}{\lambda}\)
Để 2 dao động đến M vuông pha thì: \(\Delta\varphi=\frac{\pi}{2}+k\pi\Leftrightarrow\frac{\pi}{2}+\frac{2\pi\left(2d-10\right)}{\lambda}=\frac{\pi}{2}+k\pi\Leftrightarrow d=\frac{k.\lambda}{4}+5\)
\(\Leftrightarrow d=\frac{k}{2}+5\)
Bước sóng: 2cm
Tổng số bó sóng: 10 : (2/2) = 10 bó
Mỗi bó có 2 điểm có biên độ là 5cm.
Tổng số điểm có biên độ 5cm trên đoạn AB là 10.2 = 20 điểm
Trên cả đường tròn có số các điểm là: 20 . 2 = 40 điểm.
P/S: Mình giải trong trường hợp 2 nguồn cùng pha, còn 2 nguồn vuông pha như bài toán này bạn cần khảo sát tính chất chất của điểm cực đại.
Chu kì dao động \(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k}}\)
Độ giãn cua lò xo lúc ở VTBC : \(\Delta l_0=\frac{mg}{k}\rightarrow\sqrt{\frac{k}{m}}=\sqrt{\frac{\Delta l_0}{g}}\)
Vậy \(T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{\Delta l_0}{g}}=0,628s\)
Chọn C
Để 2 vạch màu đơn sắc trùng nhau thì quang phổ bậc (k+1) phải phủ lên quang phổ bậc k
\(\Rightarrow\left(k+1\right)i_{min}\le ki_{max}\Rightarrow\left(k+1\right)\frac{\lambda_{min}D}{a}\le k\frac{\lambda_{max}D}{a}\)
\(\Rightarrow\left(k+1\right)\lambda_{min}\le k\lambda_{max}\Rightarrow\frac{k+1}{k}\le\frac{\lambda_{max}}{\lambda_{min}}=\frac{76}{39}\)
\(\Rightarrow k\ge1,054\)
k nguyên, vị trí trùng nhau gần nhất nên \(k=2\)
\(\Rightarrow x=\left(2+1\right)i_{min}=3\frac{\lambda_{min}D}{a}=2,34mm\)
Đáp án B.
Biên độ dao động tổng hợp phụ thuộc vào độ lệch pha Δφ = φ2 - φ1
Nếu hai dao động thành phần ngược pha: Δφ = φ2 - φ1 = (2n + 1)π (n = 0, ± 1,± 2,…) thì biên độ dao động tổng hợp là nhỏ nhất A = |A1 - A2 |
a)
Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A1 + A2 = A
b)
Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: |A1 - A2|=A
c)
Hai dao động có thành phần có pha vuông góc: √ (A12 + A22) = A
HT :vvv
TL
a) Hai dao động thành phần cùng pha: biên độ dao động tổng hợp là lớn nhất và bằng tổng hai biên độ: A=A1+A2
b) Hai dao động thành phần ngược pha: biên độ dao động tổng hợp là nhỏ nhất và bằng giá trị tuyệt đối của hiệu hai biên độ: A=|A1−A2|
c) Hai dao động có thành phần có pha vuông góc:
A=A12+A22
bài này trong sgk nhé
mk ko bt gõ nhưng bạn tìm trên các trang mạng nhé
hok tốt
mk lớp 8,mk tra trên mạng có bài này nhé
Khi tần số 50Hz thì uL sớm pha pi/2 so với u --> u cùng pha với i --> Cộng hưởng, công suất tiêu thụ đạt cực đại.
Do đó khi tăng f thì P giảm --> Chọn B.
Câu C sai vì I giảm --> UR giảm.
kho the troi
khó lắm