Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
1/
Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$
$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$
$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$
2/
Xét hiệu:
$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$
$=1+2x+2y+2xy-3x^2-3y^2$
$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên:
$2x(1-x)>0$
$2y(1-y)>0$
$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$
$\Rightarrow 1+xy-x^2-y^2>0$
$\Rightarrow 1+2xy-x^2-y^2>0$
Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$
$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
Ta có : \(VT=\sqrt{x-2}+\sqrt{4-x}\Rightarrow VT^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
\(=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Theo Cauchy ta có : \(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow VT^2\le2+2=4\Rightarrow VT\le2\)
Ta lại có : \(VP=2x^2-5x-1=\left(2x^2-5x-3\right)+2=\left(2x-3\right)\left(x-1\right)+2\)
Mà \(2\le x\le4\Rightarrow\left(2x-3\right)\left(x-1\right)\ge0\Rightarrow VT\ge2\)
Ta thấy : \(VT\le2\le VP\) nên dấu "=" xảy ra \(\Leftrightarrow x=3\)
Vậy \(x=3\)
cảm ơn nhiều ạ mà vì sao nghĩ ra cách đó ạ có thể diễn giải giúp mình không ạ
=>căn x+2=1/2
=>x+2=1/4
=>x=-7/4(nhận)
`8\sqrt{x+2}=4`
`->` ĐKXĐ : `x>=-2`
`<=>\sqrt{x+2}=4/8`
`<=>\sqrt{x+2}=1/2`
`<=>(\sqrt{x+2})^2=(1/2)^2`
`<=>x+2=1/4`
`<=>x=1/4-2`
`<=>x=1/4-8/4`
`<=>x=(1-8)/4`
`<=>x=-7/4`