K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Tính chất đặc trưng của tập hợp A là: Các số đểu cách nhau 2 đơn vị

Tính chất đặc trưng của tập hợp B là: Các số theo thứ tự từ bé đến lớn

Tính chất đặc trưng của tập hợp C là: Các số đểu cách nhau 2 thừa số 

Tính chất đặc trưng của tập hợp D là: Các số đều cách nhau 4 đơn vị

26 tháng 4 2017

Câu 1:

a) = \(\dfrac{-7}{2}\) x \(\dfrac{45}{32}\) = \(\dfrac{-315}{64}\)

b) = \(\dfrac{18}{7}\) : \(\dfrac{-27}{14}\) = \(\dfrac{18}{7}\) x \(\dfrac{14}{-27}\) = \(\dfrac{-4}{3}\)

c) = \(\dfrac{-3}{8}\) x ( \(\dfrac{5}{11}\) + \(\dfrac{6}{11}\) + 2 ) = \(\dfrac{-3}{8}\) x 3 = \(\dfrac{-9}{8}\)

Câu 2:

\(\dfrac{-3}{5}\) . x + \(\dfrac{7}{6}\) = \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(\dfrac{-3}{5}\) . x = \(\dfrac{5}{4}\) - \(\dfrac{7}{6}\)

\(\Leftrightarrow\) \(\dfrac{-3}{5}\) . x = \(\dfrac{1}{12}\)

\(\Leftrightarrow\) x = \(\dfrac{1}{12}\) : \(\dfrac{-3}{5}\)

\(\Leftrightarrow\) x = \(\dfrac{-5}{36}\)

NV
17 tháng 10 2019

Bấm mode - 5 -3 (giải pt bậc 2)

Nhập hệ số vào như bình thường, bấm "=" 2 lần (bỏ qua bước nghiệm ko cần quan tâm nghiệm bằng bao nhiêu)

Màn hình hiện X-value minimum, đó chính là giá trị x làm cho hàm đạt GTNN.

Bấm "=" tiếp, màn hình hiện Y-value minimum, đó là GTNN cần tìm

Bạn sẽ thấy đáp án C luôn

Nhìn vào 2 kết quả máy tính cho này, ta cũng có thể phân tách được luôn hàm về dạng hằng đẳng thức: \(y=2\left(x+\frac{1}{4}\right)^2-\frac{25}{8}\) mà ko cần suy nghĩ gì

2 tháng 7 2018

Giúp mình với

NV
26 tháng 9 2019

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=9\Rightarrow x+y+z\ge3\)

\(P=\sum\frac{x^2}{\sqrt{x^3+8}}=\sum\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}\ge\sum\frac{2x^2}{x^2-x+6}\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2+6-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}-1+1\)

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2+\left(x+y+z\right)-12}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1=\frac{\left(x+y+z-3\right)\left(x+y+z+4\right)}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}+1\)

Do \(x+y+z-3\ge0\Rightarrow P\ge1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

26 tháng 9 2019

Èo, thé này mà sang giờ em nghĩ mãi ko ra:(

NV
10 tháng 5 2020

b/ ĐKXĐ; ...

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+3x^2+3x+1-16x-16=\frac{8}{y^3}-\frac{8}{y}\\5\left(x^2+2x+2\right)=1+\frac{4}{y^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\frac{8}{y^3}-\frac{8}{y}\\5\left(x+1\right)^2=\frac{4}{y^2}-4\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=a\\\frac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3-16a=8b^3-8b\\5a^2=4b^2-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^3-8b^3=16a-8b\\4=-5a^2+4b^2\end{matrix}\right.\)

Nhân vế với vế:

\(4\left(a^3-8b^3\right)=4\left(4a-2b\right)\left(-5a^2+4b^2\right)\)

\(\Leftrightarrow21a^3-10a^2b-16ab^2=0\)

\(\Leftrightarrow a\left(21a^2-10ab-16b^2\right)=0\)

\(\Leftrightarrow a\left(7a-8b\right)\left(3a+2b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\7a=8b\\3a=-2b\end{matrix}\right.\) \(\Rightarrow...\)

NV
10 tháng 5 2020

a/ \(\left\{{}\begin{matrix}x^2+y+xy\left(x^2+y\right)+xy+1=-\frac{1}{4}\\x^4+y^2+2x^2y+xy+1=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y+1\right)\left(xy+1\right)=-\frac{1}{4}\\\left(x^2+y\right)^2+xy+1=-\frac{1}{4}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy+1=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\a^2+b=-\frac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)b=-\frac{1}{4}\\b=-\frac{1}{4}-a^2\end{matrix}\right.\)

\(\Rightarrow\left(a+1\right)\left(-\frac{1}{4}-a^2\right)=-\frac{1}{4}\)

\(\Leftrightarrow4a^3+4a^2+a=0\Leftrightarrow a\left(2a+1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\Rightarrow b=-\frac{1}{4}\\a=-\frac{1}{2}\Rightarrow b=-\frac{1}{2}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x^2+y=0\\xy+1=-\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-x^2\\-x^3=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)

TH2: \(\left\{{}\begin{matrix}x^2+y=-\frac{1}{2}\\xy+1=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=-\frac{1}{2}-x^2\\x\left(-\frac{1}{2}-x^2\right)=-\frac{5}{4}\end{matrix}\right.\) \(\Rightarrow...\)