Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim x,y,z biet
\(\frac{x+y+2019}{z}\)=\(\frac{y+z-2020}{x}\)=\(\frac{z+x+1}{y}\)=\(\frac{2}{x+y+z}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
\(=\frac{x+y+2019+y+z-2020+z+x+1}{z+x+y}=2\)
\(\Rightarrow x+y+z=1\)
\(\Rightarrow\hept{\begin{cases}x+y=1-z\\y+z=1-x\\x+z=1-y\end{cases}}\)
Thay vào đầu bài:
\(\frac{1-z+2019}{z}=\frac{1-x-2020}{x}=\frac{1-y+1}{y}\)
\(\Leftrightarrow\frac{2020-z}{z}=\frac{-2019-x}{x}=\frac{2-y}{y}\)
\(\Leftrightarrow\frac{2020}{z}=\frac{-2019}{x}=\frac{2}{y}=\frac{2020-2019+2}{x+y+z}=3\)(Theo t/c dãy tỉ số bằng nhau)
\(\Rightarrow\hept{\begin{cases}z=\frac{2020}{3}\\x=\frac{-2019}{3}\\y=\frac{2}{3}\end{cases}}\)
ĐK: x , y, z, x+y+z khác 0
Áp dụng dãy tỉ số bằng nhau: ( kiến thức trong SGK lớp 7 em tìm hiểu lại nhé! )
\(\frac{x+y+2019}{z}=\frac{y+z-2020}{x}=\frac{z+x+1}{y}=\frac{x+y+2019+y+z-2020+z+x+1}{x+y+z}\)
\(=\frac{2x+2y+2z}{x+y+z}=2\)
=> \(\frac{2}{x+y+z}=2\Leftrightarrow x+y+z=1\) (1)
\(\frac{x+y+2019}{z}=2\Leftrightarrow x+y+2019=2z\)(2)
\(\frac{y+z-2020}{x}=2\Leftrightarrow y+z-2020=2x\) (3)
\(\frac{z+x+1}{y}=2\Leftrightarrow z+x+1=2y\) (4)
Từ (1) <=> x + y = 1 - z ; y +z =1 - x ; z + x = 1 -y . Lần lượt thế vào (2) ; (3) ; (4) để tìm x, y, z
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với :
\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)
cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).
a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF
b) tinh dien h tam giac AEF theo a va x
tim x de dien h tam giac AEF đặt GTNN