K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

7x^2 - 42x + 63 = 0

<=>7.(x^2 - 6x + 9) = 0

<=>7.(x - 3)^2 = 0

<=>x - 3 = 0

<=> x = 3

28 tháng 10 2019

\(|2x^2-3x+4|-|2x-x^2-1|=0\)

\(\Leftrightarrow|2x^2-3x+4|=|2x-x^2-1|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=-2x+x^2+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4-2x+x^2+1=0\\2x^2-3x+4+2x-x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x^2-\frac{5}{3}x+\frac{25}{9}-\frac{25}{9}+\frac{5}{3}\right)=0\\x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3\left(x-\frac{5}{3}^2\right)-\frac{10}{3}=0\\\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\left(Loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}\right)^2-\left(\frac{\sqrt{30}}{3}\right)^2=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}-\frac{\sqrt{30}}{3}\right)\left(x\sqrt{3}-\frac{5\sqrt{3}}{3}+\frac{\sqrt{30}}{3}\right)=0\)

\(\Leftrightarrow\left(x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}\right)\left(x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{3}-\frac{\sqrt{30}+5\sqrt{3}}{3}=0\\x\sqrt{3}+\frac{\sqrt{30}-5\sqrt{3}}{3}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{10}}{3}\\x=\frac{5-\sqrt{10}}{3}\end{cases}}\)

Vậy ...

31 tháng 10 2019

\(\left|2x^2-3x+4\right|-\left|2x-x^2-1\right|=0\)

\(\Leftrightarrow\left|2x^2-3x+4\right|=\left|2x-x^2-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x^2-3x+4=2x-x^2-1\\2x^2-3x+4=x^2-2x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x^2-5x+5=0\\x^2-x+3=0\end{cases}}\)

\(TH1:3x^2-5x+5=0\)

Ta có: \(\Delta=5^2-4.3.5=-35< 0\)(vô nghiệm)

\(TH2:x^2-x+3=0\)

Ta có: \(\Delta=1^2-4.1.3=-11< 0\)(vô nghiệm)

Vậy pt vô nghiệm

NV
3 tháng 11 2019

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=2x+2\\x^2-4x-5=-2x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-7=0\\x^2-2x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=7\\x=3\end{matrix}\right.\)

10 tháng 8 2016

a/ 3x - 6 = 0

<=> 3(x-2) = 0

<=> x- 2 = 0

<=> x= 2

b/ 5x2-10x=0

<=> 5x(x-2)= 0

<=> \(\begin{cases}5x=0\\x-2=0\end{cases}\)

<=> \(\begin{cases}x=0\\x=2\end{cases}\)

c/ 7x2-28 =0 

<=> 7(x2-4)=0

<=> (x+2)(x-2)=0

<=> \(\begin{cases}x-2=0\\x+2=0\end{cases}\)

<=> \(\begin{cases}x=2\\x=-2\end{cases}\)

10 tháng 8 2016

a)3x - 6=0

=>3(x-3)=0

=>x-3=0 

=>x=3

b)5x2 - 10x=0

=>x(5x-10)=0

=>x=0 hoặc 5x-10=0 <=>x=2

c)7x228=0

=>7(x2-4)=0

=>x2-4=0

=>x2=4

=>x2=(-2)2 hoặc 22

=>x=2 hoặc -2

 

b) \(3\left(x^2+2x+1\right)=10\)

\(\Leftrightarrow\left(x+1\right)^2=\frac{10}{3}\)

Chia 2 TH tiếp .

17 tháng 3 2020

biến đổi tương đương (x+3)(\(\sqrt{x^2-4}-x-3\))≤0

TH1 :

\(\left\{{}\begin{matrix}\sqrt{x^2-4}-x-3\text{>=0}\\\text{x+3≤0}\end{matrix}\right.\)

trường hợp 2 thì ngược với trường hợp 1 nếu bạn học lớp 10 rồi chắc đây đây là biết

NV
8 tháng 3 2020

1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)

\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)

2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)

\(\Rightarrow\frac{3}{2}< x< 2\)

3. \(\Leftrightarrow\left(5x-3\right)^2>0\)

\(\Rightarrow x\ne\frac{3}{5}\)

4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)

\(\Rightarrow x\in R\)

5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)

\(\Rightarrow x\in R\)

NV
8 tháng 3 2020

6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)

\(\Rightarrow-2\le x\le-\frac{7}{8}\)

7.

\(\Leftrightarrow\left(x-1\right)^2+2>0\)

\(\Rightarrow x\in R\)

8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)

9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)

\(\Rightarrow-6< x< -3\)

10. \(\Leftrightarrow x^2-6x+9>0\)

\(\Leftrightarrow\left(x-3\right)^2>0\)

\(\Rightarrow x\ne3\)