Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x^2-9 =0
=> x^2-3^2=0
=> (x-2)(x+2)=0
=> x-2=0 hoặc x+2=0
=> x=2 hoặc x=-2
Vậy....
b)x(x+2)=0
=>x=0 hoặc x+2=0
=> x=0 hoặc x=-2
Vậy ....
c) Tương tự a ...có 25=5^2
d)ta có 7x^2-28=0
=> 7*x^2 =28
<=>x^2=4
<=> x=2
Vậy .....
e ) , f) tự làm đi ...dễ mà
a) x2-9=0
=> x2=0+9=9
=> x2=9
=> x=9:3
=> x=3
c) x2-25=0
=> x2=0+25=25
=>x2=25
=> 25:2=5
=> x=5
e) \(\left(9x^2-49\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\text{[}\left(3x\right)^2-7^2\text{]}+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x-7\right)\left(3x+7\right)+\left(3x+7\right)\left(7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\text{[}\left(3x-7\right)+\left(7x+3\right)\text{]}=0\)
\(\Rightarrow\left(3x+7\right)\left(3x-7+7x+3\right)=0\)
\(\Rightarrow\left(3x+7\right)\left(10x-4\right)=0\)
=> 2 TH
*3x+7=0 *10x-4=0
=>3x=-7 =>10x=4
=>x=-7/3 =>x=4/10=2/5
vậy x=-7/3 hoặc x=2/5
g) \(\left(x-4\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow\left(x-4\right)^2-\left(2x-1\right)^2=0\)
\(\Rightarrow\left(x-4-2x+1\right)\left(x-4+2x-1\right)=0\)
\(\Rightarrow\left(-x-3\right)\left(3x-5\right)=0\)
\(\Rightarrow-\left(x+3\right)\left(3x-5\right)=0\)
=> 2 TH
*-(x+3)=0 *3x-5=0
=>-x=-3 =>3x=5
=x=3 =>x=5/3
h)\(x^2-x^2+x-1=0\)
\(\Rightarrow0+x-1=0\)
\(\Rightarrow x-1=0\)
=>x=0+1
=>x=1
vậy x=1
k, x(x+ 16) - 7x - 42 = 0
=>x^2+16x-7x-42=0
=>x^2+9x-42=0
vì x^2>0
do đó x^2+9x-42>0
nên o có gt nào của x t/m y/cầu đề bài
m)x^2+7x+12=0
=>x^2+3x++4x+12=0
=>x(x+3)+4(x+3)=0
=>(x+4).(x+3)=0
=>2 TH
=> *x+4=0
=>x=-4
vậy x=-4
*x+3=0
=>x=-3
vậy x=-3
n)x^2-7x+12=0
=>x^2-4x-3x+12=0
=>x(x-4)-3(x-4)=0
=>(x-3).(x-4)=0
=>2 TH
*x-3=0=>x=0+3=>x=3
*x-4=0=>x=0+4=>x=4
vậy x=3 hoặc x=4
a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1a)(3x−3)(5−21x)+(7x+4)(9x−5)=44⇔15x−63x2−15+63x+63x2−35x+36x−20=44⇔79x−35=44⇔79x=79⇒x=1
b)(x+1)(x+2)(x+5)−x2(x+8)=27⇔x2+2x+x+2(x+5)−x3−8x2=27⇔x2(x+5)+2x(x+5)+x(x+5)+2(x+5)−x3−8x2=27⇔x3+5x2+2x2+10x+x2+5x+2x+10−x3−8x2=27⇔17x+10=27⇔17x=17⇒x=1
\(a,ĐKXĐ:x\ne4\\ P=\frac{x^3+4x^2-17x-60}{x^3-4x^2+7x-28}\\ =\frac{x^3-4x^2+8x^2-32x+15x-60}{x^2\left(x-4\right)+7\left(x-4\right)}\\ =\frac{x^2\left(x-4\right)+8x\left(x-4\right)+15\left(x-4\right)}{\left(x-4\right)\left(x^2+7\right)}\\ =\frac{\left(x-4\right)\left(x^2+3x+5x+15\right)}{\left(x-4\right)\left(x^2+7\right)}\\ =\frac{\left(x+3\right)\left(x+5\right)}{x^2+7}\)
b, Với x khác 4, ta có:
ý bạn là như thế này đúng không ạ:
a/ \(x^2-6x+5=0\)
\(x^2-5x-x+5=0\)
\(x\left(x-5\right)-\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)
b/\(2x^2+7x+9=0\)
?!
c/ \(4x^2-7x+3=0\)
\(4x^2-4x-3x+3=0\)
\(4x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(x-1\right)\left(4x-3\right)=0\)
\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)
d/ \(2\left(x+5\right)=2x+10\)
-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn
\(x^2-6x+5=0\)
<=> \(x^2-x-5x+5=0\)
<=> \(x\left(x-1\right)-5\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x-5\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x=1 và x=5
\(2x^2+7x-9=0\) ( nếu là 9 thì ko ra kq đc nên mình đổi thành -9 nha )
<=> \(2x^2-2x+9x-9=0\)
<=> \(2x\left(x-1\right)+9\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(2x+9\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\2x+9=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{-9}{2}\end{matrix}\right.\)
\(4x^2-7x+3=0\)
<=> \(4x^2-4x-3x+3=0\)
<=>\(4x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(4x-3\right)=0\)
<=> \(\left\{{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)
\(2\left(x+5\right)=x^2+5x\)
<=> \(2\left(x+5\right)-x^2-5x=0\)
<=>\(2\left(x+5\right)-x\left(x+5\right)=0\)
<=>\(\left(x+5\right)\left(2-x\right)=0\)
<=>\(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a)
a) 3x2+12x−66=0
=> 3(x + 2)2 - 12 - 66 = 0
=> 3(x + 2)2 - 78 = 0
=> 3(x + 2)2 = 78
=> (x + 2)2 = 26
=> x = \(\sqrt{26}-2\)
b)9x2−30x+225=0
=> (3x - 5)2 - 25 + 225 = 0
=> (3x - 5)2 + 200 = 0
=> (3x - 5)2 = -200
9x2 - 30x + 225 không có ngiệmc)x2+3x−10=0=> (x + 1,5)2 - 2,25 - 10 = 0
=> (x + 1,5)2 - 12,25 = 0
=> (x + 1,5)2 = 12, 25
=> x + 1,5 = 3,5
=> x = 2
d)3x2−7x+1=0=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)
=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)
=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)
e) 3x2−7x+8=0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0
=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)
KL : Không có ngiệm
\(a,7x^2-28x+28\)
\(=7\left(x^2-4x+4\right)\)
\(=7\left(x^2-2x2+2^2\right)\)
\(=7\left(x-2\right)^2\)
b) \(x^2-7x+12=x^2-3x-4x+12=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
c) \(x^3-2x+4=x^3-4x+2x+4=x\left(x^2-4\right)+2\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
\(7x^2-13xy-2y^2=0\)
\(\Leftrightarrow7x^2-14xy+xy-2y^2=0\)
\(\Leftrightarrow7x\left(x-2y\right)+y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(7x+y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow x=2y\) (do x;y>0)
Do đó: \(A=\frac{2.2y-6y}{7.2y+4y}=\frac{-2y}{18y}=-\frac{1}{9}\)