Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
k) \(2x-49=5.3^2\)
\(2x-49=45\)
\(2x=49+45\)
\(2x=94\)
\(x=47\)
l) \(3^2.\left(x+14\right)-5^2=5.2^2\)
\(9.\left(x+14\right)-25=20\)
\(9.\left(x+14\right)=45\)
\(x+14=5\)
\(x=-9\)
m) \(6x+x=5^{11}:5^9+3^1\)
\(7x=5^{11-9}+3\)
\(7x=5^2+3\)
\(7x=28\)
\(x=4\)
n) \(7x-x=5^{21}:5^{19}+3.2^2-\left(-7^{-0}\right)\)
\(6x=5^{21-19}+12-1\)
\(6x=5^2+11\)
\(6x=36\)
\(x=6\)
o) \(7x-2x=6^{17}:6^{15}+44:11\)
\(5x=6^{17-15}+4\)
\(5x=6^2+4\)
\(5x=40\)
\(x=8\)
o)7x-x=521:519+3.22-70
=> 6x = 5^2 + 12 -1
=> 6x = 36
=> x = 36/6 = 6
Kết quả 6
Học tốt
(7x-11mũ 3)=2.2.2.2.2.5mũ 90
2.2.2.2.2.5mũ 90 =14400
7x=74
\(a,3\frac{1}{3}x+16\frac{3}{4}=-13,25\)
\(\frac{10}{3}x+\frac{67}{4}=-13,25\)
\(\frac{10}{3}x=-13,25-\frac{67}{4}\)
\(\frac{10}{3}x=-30\)
\(x=\left(-30\right):\frac{10}{3}\)
\(x=-9\)
\(b,\left(7x-11\right)^3=2^5.5^2+200\)
\(\left(7x-11\right)^3=32.25+200\)
\(\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=10+11\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
A) (10/3)x+67/4=-53/4<=>(10/3)x=-53/4-67/4=-30<=>x=-30:(10/3)=-9 b) (7x-11)^3=1000=10^3<=>7x-11=10=>7x=21=>x=3
(7x - 11)3 = 25 . 52 + 200
\(\Rightarrow\) (7x - 11)3 = 32 . 25 + 200
(7x - 11)3 = 25 . 52 + 200
(7x - 11)3 = 32 . 25 + 200
(7x - 11)3 = 800 + 200
(7x - 11)3 = 1000
(7x - 11)3 = 103
7x - 11 = 10
7x = 10 + 11
7x = 21
x = 21 : 7
x = 3
=>(7x-11)^3=1000
=>\(\left(7x-11\right)^3=10^3\)
=>7x-11=10
=>7x=10+11
=>7x=21
=>x=21:7
=>x=3
Bài 4 :
\(D=11+11^2+11^3+...+11^{1000}\)
\(11D=11^2+11^3+11^4+...+11^{1001}\)
\(11D-D=\left(11^2+11^3+11^4+...+11^{1001}\right)-\left(11+11^2+11^3+...+11^{1000}\right)\)
\(10D=11^{1001}-11\)
\(D=\frac{11^{1001}-11}{10}\)
Vậy \(D=\frac{11^{1001}-11}{10}\)
Chúc bạn học tốt ~
Bài 1 :
\(A=1+2+2^2+....+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
Chúc bạn học tốt ~
=>7x-11=\(\sqrt[3]{100}\)
=>\(7x=\sqrt[3]{100}+11\)
=>\(x=\dfrac{\sqrt[3]{100}+11}{7}\)