Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
So sánh
11 - \(\sqrt{7}\)và 7 + 2\(\sqrt{3}\)
\(\sqrt{10}\)- 6 và 2\(\sqrt{7}\)- 8
Giúp mình gấp please



a) Ta có: \(\left(2+\sqrt{3}\right)^2=4+2.2\sqrt{3}+\left(\sqrt{3}\right)^2=7+\sqrt{48}\)
\(\left(1+\sqrt{5}\right)^2=1+2\sqrt{5}+5=6+2\sqrt{5}=6+\sqrt{20}\)
\(\hept{\begin{cases}\sqrt{20}< \sqrt{48}\\6< 7\end{cases}}\Rightarrow\sqrt{20}+6< \sqrt{48}+7\)
\(\Rightarrow\left(1+\sqrt{5}\right)^2< \left(2+\sqrt{3}\right)^2\Rightarrow1+\sqrt{5}< 2+\sqrt{3}\)
b) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
Bài giải :
Ta có :
\(7^3\sqrt{8}=9701505038\)
\(8^3\sqrt{7}=1354624671\)
Vì 9701505038 > 1354624671
=> \(7^3\sqrt{8}>8^3\sqrt{7}\)
Vậy .....
\(7\sqrt[3]{8}=7.2=14\)
\(8\sqrt[3]{7}\approx15,303\)
Vì \(15,303>14\)nên \(8\sqrt[3]{7}>7\sqrt[3]{8}\)