
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Gọi ƯCLN của 7n+10 và 5n+7 là d ( d thuộc N sao )
=> 7n+10 và 5n+7 đều chia hết cho d
=> 5.(7n+10) và 7.(5n+7) đều chia hết cho d hay 35n+50 và 35n+49 đều chia hết cho d
=> 35n+50-(35n+49) chia hết cho d hay 1 chia hết cho d => d = 1 ( vì d thuộc N sao )
=> ƯCLN của 7n+10 và 5n+7 là 1
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
=> ĐPCM
Gọi d là ƯCLN(7n + 10, 5n + 7), d\(\in\)N*
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(7n+10,5n+7\right)=1\)
\(\Rightarrow\)7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.


Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________
Gọi d > 0 là ước số chung của 2n+3 và 4n + 8
=> d là ước số của 2(2n + 3) = 4n + 6
(4n + 8) - (4n + 6) = 2
=> d là ước số của 2 => d=1,2
d = 2 không là ước số của số lẻ 2n+3 => d = 1
Vậy __________________

Giải:
Gọi ƯCLN(7n+10;5n+7)=d
=>7n+10 : d =>5.(7n+10) : d =>35n+50 : d
5n+7 : d 7.(5n+7) : d 35n+49 : d
=>(35n+50)-(35n+49) : d
=> 1 : d
=> d=1
Vậy ...
Chúc bạn học tốt!

Gọi UCLN (7n+10,5n+7) la d.
Ta có:7n+10 chia hết cho d
5n+7 chia hết cho d
=>35n+50 chia hết cho d
35n+49 chia het cho d
hay (35n+50) - (35n+49) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vay 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.

Gọi ƯCLN(7n+10;5n+7)=d
Ta có: 7n+10 chia hết cho d
=>5(7n+10) chia hết cho d
35n+50 chia hết cho d
có 5n+7 chia hết cho d
=>7(5n+7) chia hết cho d
35n+49 chia hết cho d
=>35n+50-(35n+49) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó , ƯCLN(7n+10;5n+7)=1
Vậy 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau

Giải :
Gọi d là ƯCLN của 7n+10 và 5n+7
=> 7n + 10 chia hết cho d ; 5n + 7 chia hết cho d
=> 35n + 50 chia hết cho d ;35n + 49 chia hết cho d
=> ( 35n + 50 - 35n + 49 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
~ HT ~
Gọi m là ƯCLN(7n + 10, 5n + 7)
=>\(\hept{\begin{cases}7n+10⋮m\\5n+7⋮m\end{cases}}\)
=>\(\hept{\begin{cases}5\left(7n+10\right)⋮m\\7\left(5n+7\right)⋮m\end{cases}}\)
=> \(\hept{\begin{cases}35n+50⋮d\\35+49⋮d\end{cases}}\)
=> (35n + 50) - (35n + 49) \(⋮\)d
=> 1 chia hết cho d
=> d = 1
K/l: Vậy 7n + 10 và 5n + 7 là số nguyên tố cùng nhau
Saii srr bn