
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=2+2^2+2^3+2^4+.....2^{100}\)
\(=2.3+2^3.3+....2^{99}.3\)
\(=6\left(1+2^2+....2^{98}\right)⋮6\)
A = 2 + 2\(^2\) + 2\(^3\) + ...+ \(2^{100}\)
Xét dãy số: 1; 2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1+ 1 = 100
Vì 100 : 2 = 50
Nên nhóm 2 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 2\(^2\)) + (\(2^3\) + \(2^4\)) + ...+(2\(^{99}\) + 2\(^{100}\))
A = 2.(2 + 1) + 2\(^3\).(1 + 2) + ...+ 2\(^{99}.\left(1+2\right)\)
A = 2.3 + 2\(^3\).3+ ...+ 2\(^{99}\). 3
A = 2.3.(1 + 2\(^3\) + ...+ 2\(^{99}\))
A = 6.(1+ 2\(^3\) + ... + 2\(^{99}\)) ⋮ 6 (đpcm)
A, Chứng tỏ ab + ba chia hết cho 11
B, Tìm n để 7n là số nguyên tố
C, Ai trả lời nhanh nhất thì 1 tick

A, ab + ba
= ( 10a + b ) + ( 10b + a )
= ( 10a + a ) + ( 10b + b )
= 11a + 11b
Mà 11 \(⋮\)11 \(\Rightarrow\)( 11a + 11b ) \(⋮\)11
Vậy ab + ba chia hết cho 11 ( đpcm )
B, Để 7n là số nguyên tố thì 7n chỉ chia hết cho 1 và 7
Ta thấy 7n = 7 \(⋮\)1;7
Còn nếu 7n > 7 thì 7n là hợp số
Vậy để 7n là số nguyên tố thì n = 1
a) ta có:
ab+ba=ao+a+b0+b
=a.10+a+b.10+b
=a(10+1)+b(10+1)
=a.11+b.11
=(a+b)11 chia hết cho 11

ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
cíu làm giúp với >=D.

a) \(\overline{6x7}⋮3\Leftrightarrow x\in\left\{2;8\right\}\)
b) \(\overline{21xy}⋮2;5\Leftrightarrow y=0\)
Để: \(\overline{21x0}⋮3\Leftrightarrow x\in\left\{3;6;9\right\}\)

Để 548* : hết cho 5 thì *={0;5}
Nếu *=0 thì:
(5+4+8+0)=17
17 ko chia hết cho 3
Nếu *=5 thì:
(5+4+8+5)=22
22 ko chia hết cho 3
=> không có * thỏa đề
7n + 1 = 7n + 21 - 20
= 7(n + 3) - 20
Để (7n + 1) ⋮ (n + 3) thì 20 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(20) = {-20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}
⇒ n ∈ {-23; -13; -8; -7; -5; -4; -2; -1; 1; 2; 7; 17}