\(P\frac{1}{ab-a-1}+\frac{b}{bc+b+1}=\frac{1}{abc+bc+b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Có abc=1 nên 
1/(1+a+ab)=abc/(abc+a+ab) 
=abc/[a(1+b+bc)] 
=bc/(1+b+bc) 

1/(1+c+ac)=abc/(abc+c.abc+ac) 
=abc/[ca(1+b+bc)]=b/(1+b+bc) 

=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac) 
=bc/(1+b+bc)+1/(1+b+bc)+b/(1+b+bc) 
=(1+b+bc)/(1+b+bc) 
=1 
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)=1

ràu xong

22 tháng 7 2016

thanks bạn nhiều 

14 tháng 12 2018

\(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)

\(=\frac{1}{1+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{abc+abc+ab}=\frac{1}{1+ab+a}+\frac{ab}{1+ab+a}+\frac{a}{1+a+ab}\)(vì abc=1)

\(=\frac{1+ab+a}{ab+a+1}=1\)

11 tháng 8 2018

Ta có \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)mình chỉnh sửa đề 1 chút , chắc bạn viết sai

\(=\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)(vì abc=1)

\(=\frac{1}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{a}{a.\left(1+bc+b\right)}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{a+abc+ab}\)

\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)

\(=\frac{1+ab+a}{ab+a+1}\)

\(=1\)

11 tháng 11 2015

\(\frac{a}{a+ab+1}=\frac{ac}{ac+1+c}\)
\(\frac{bc}{b+bc+1}=\frac{ac}{1+ac+c}\)
=>A=1 

2 tháng 1 2017

\(S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{bc}{bc+bc^2+c^2ab}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}\)

\(=\frac{1+b+bc}{1+bc+b}=1\rightarrow S=1\)

13 tháng 2 2019

\(S=1\)

23 tháng 10 2018

\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)

\(\Rightarrow S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{abc}{abc+c.abc+ca}\)

\(S=\frac{abc}{a.\left(bc+b+1\right)}+\frac{1}{1+b+bc}+\frac{abc}{ac.\left(bc+b+1\right)}\)

\(S=\frac{bc}{bc+b+1}+\frac{1}{1+b+bc}+\frac{b}{bc+b+1}\)

\(S=\frac{bc+b+1}{bc+b+1}\)

\(S=1\)

Điều kiện \(c\ge0\);\(a;b>0\)

Ta có: \(a>b\)

\(\Rightarrow ac\ge bc\)

\(\Rightarrow ac+ab\ge bc+ab\)

\(a.\left(b+c\right)\ge b.\left(c+a\right)\)

\(\Rightarrow\frac{a+c}{b+c}\ge\frac{a}{b}\)

Tham khảo nhé~

4 tháng 5 2016

Vậy để mình giúp  haha

4 tháng 5 2016

Phải là \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+bc+1}=1\) thì mới làm đc bạn à 

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)