K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

mk chịu

4 tháng 2 2018

ko biết ?

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.b) Tính P(l) và P(-l).Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N. Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.a) Chứng...
Đọc tiếp

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.

a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.

b) Tính P(l) và P(-l).

Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và 

N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N.

 

Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh và AM là tia phân giác của góc BAC.

b) Chứng minh.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ (E thuộc AB) và (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Câu 13. (1 điểm) Một người đứng trên bờ biển ở vị trí B, muốn đến một con tàu ở vị trí E trên mặt biển. Người đó có thể di chuyển theo 3 cách:

Cách 1. Bơi thẳng từ B tới E.

Cách 2. Chạy dọc theo bờ biển từ B tới D sau đó bơi từ D tới E.

Cách 3. Chạy dọc theo bờ biển từ B tới C rồi bơi từ C tới E. 

Biết rằng BE = 500m; BD = 300m; DE = 400m; CD = 70m,

. Hơn nữa, tốc độ bơi trung bình của người đó là 1m/s và tốc độ chạy trung bình là 3m/s. Hỏi:

a) Trong ba con đường đi từ B tới E nêu trên, con đường nào ngắn nhất, con đường nào dài nhất? Tại sao?

b) Với giả thiết đã cho, người đó nên chọn con đường nào để di chuyển từ B đến E nhanh nhất?

1
9 tháng 5 2020

Câu 10 . 

a)\(P\left(x\right)=2x^2+1\)Mình làm tắt lun vì bài này dễ

b) \(P\left(\pm1\right)=2.\left(\pm1\right)^2+1=3\)Do x^2 nên 1 vs -1 k có khác nhau nên mh thay 1 lần luôn

Câu 11: 

\(M+N=2x^2-2xy-3y^2+1+x^2-2xy+3y^2-1\)

\(=3x^2-4xy=x\left(2x-4y\right)\)

\(M-N=2x^2-2xy-3y^2+1-x^2+2xy-3y^2+1\)

\(=x^2-6y^2+2\)

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.b) Tính P(l) và P(-l).Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N. Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.a) Chứng...
Đọc tiếp

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.

a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.

b) Tính P(l) và P(-l).

Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và 

N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N.

 

Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh và AM là tia phân giác của góc BAC.

b) Chứng minh.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ (E thuộc AB) và (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Câu 13. (1 điểm) Một người đứng trên bờ biển ở vị trí B, muốn đến một con tàu ở vị trí E trên mặt biển. Người đó có thể di chuyển theo 3 cách:

Cách 1. Bơi thẳng từ B tới E.

Cách 2. Chạy dọc theo bờ biển từ B tới D sau đó bơi từ D tới E.

Cách 3. Chạy dọc theo bờ biển từ B tới C rồi bơi từ C tới E. 

Biết rằng BE = 500m; BD = 300m; DE = 400m; CD = 70m,

. Hơn nữa, tốc độ bơi trung bình của người đó là 1m/s và tốc độ chạy trung bình là 3m/s. Hỏi:

a) Trong ba con đường đi từ B tới E nêu trên, con đường nào ngắn nhất, con đường nào dài nhất? Tại sao?

b) Với giả thiết đã cho, người đó nên chọn con đường nào để di chuyển từ B đến E nhanh nhất?

0
Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.b) Tính P(l) và P(-l).Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N. Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.a) Chứng...
Đọc tiếp

Câu 10. (1 điểm) Cho đa thức: P(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - 2x4 + 1 - 4x3.

a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo luỹ thừa giảm dần của biến.

b) Tính P(l) và P(-l).

Câu 11. (1 điểm) Cho hai đa thức: M = 2x2 - 2xy - 3y2 + 1 và 

N = x2 - 2xy + 3y2 - 1. Tính M + N và M - N.

 

Câu 12. (4 điểm) Cho tam giác ABC có AB = AC = 5cm, BC = 6cm, AM là đường trung tuyến xuất phát từ đỉnh A của tam giác ABC.

a) Chứng minh và AM là tia phân giác của góc BAC.

b) Chứng minh.

c) Tính độ dài các đoạn thẳng BM và AM.

d) Từ M vẽ (E thuộc AB) và (F thuộc AC). Tam giác MEF là tam giác gì? Vì sao?

Câu 13. (1 điểm) Một người đứng trên bờ biển ở vị trí B, muốn đến một con tàu ở vị trí E trên mặt biển. Người đó có thể di chuyển theo 3 cách:

Cách 1. Bơi thẳng từ B tới E.

Cách 2. Chạy dọc theo bờ biển từ B tới D sau đó bơi từ D tới E.

Cách 3. Chạy dọc theo bờ biển từ B tới C rồi bơi từ C tới E. 

Biết rằng BE = 500m; BD = 300m; DE = 400m; CD = 70m,

. Hơn nữa, tốc độ bơi trung bình của người đó là 1m/s và tốc độ chạy trung bình là 3m/s. Hỏi:

a) Trong ba con đường đi từ B tới E nêu trên, con đường nào ngắn nhất, con đường nào dài nhất? Tại sao?

b) Với giả thiết đã cho, người đó nên chọn con đường nào để di chuyển từ B đến E nhanh nhất?

1
10 tháng 5 2020

Đáp án:

Giải thích các bước giải:

a) x3+2x2+1x3+2x2+1

b)P(1)=13+2×12+1=4P(−1)=(−1)3+2(−1)2+1=2

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc...
Đọc tiếp

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?

1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.

2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.

3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân

4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc vuông và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

5.Góc ngoài của tam giác bằng tổng hai góc trong của tam giác đó.

6.Tam giác cân có một góc bằng 60 độ thì tam giác đó là tam giác đều.

7.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp Góc-cạnh-góc.

8.Tam giác có độ dài ba cạnh là 6 cm,8 cm,10 cm là tam giác vuông.

Làm giúp mình nha!Mình đang cần gấp! 

4
2 tháng 3 2018
Bạn viết không hoàn chỉnh thì sao trả lời đc?
2 tháng 3 2018

Không hoàn chỉnh ở chỗ nào?

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc...
Đọc tiếp

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?

1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.

2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.

3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân

4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc vuông và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

5.Góc ngoài của tam giác bằng tổng hai góc trong của tam giác đó.

6.Tam giác cân có một góc bằng 60 độ thì tam giác đó là tam giác đều.

7.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp Góc-cạnh-góc.

8.Tam giác có độ dài ba cạnh là 6 cm,8 cm,10 cm là tam giác vuông.

Làm giúp mình nha!Mình đang cần gấp! 

2
2 tháng 3 2018

Đúng:3( quá rõ rồi @@),5,6,8

Sai:1,2,4,7.

Cái nào chưa hiểu để mik giải thích

22 tháng 2 2021

Khẳng định đúng : 3 , 5 , 6 , 8

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc...
Đọc tiếp

Khẳng định sau,khẳng định nào Đúng(Đ);Sai(S)?

1.Trong một tam giác vuông, bình phương một cạnh bằng tổng bình phương hai cạnh còn lại.

2.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau.

3.Tam giác cân có một góc ở đáy bằng 45 độ là tam giác cân

4.Nếu một cạnh góc vuông và một góc nhọn của tam giác này bằng một cạnh góc vuông và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

5.Góc ngoài của tam giác bằng tổng hai góc trong của tam giác đó.

6.Tam giác cân có một góc bằng 60 độ thì tam giác đó là tam giác đều.

7.Nếu một cạnh và hai góc của tam giác này bằng một cạnh và hai góc của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp Góc-cạnh-góc.

8.Tam giác có độ dài ba cạnh là 6 cm,8 cm,10 cm là tam giác vuông.

Làm giúp mình nha!Mình đang cần gấp! 

0