Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D x
a) \(\Delta ABC\)có: \(\widehat{ACB}=180^o-75^o-60^o=45^o\)
\(\Delta\)DAB vuông tại A có: \(\widehat{DBA}\)=60o-15o=45o
=> \(\Delta\)DAB cân tại A => \(\widehat{ADB}\)=45o
Tứ giác ABCD có: \(\widehat{ADB}=\widehat{ACB}\left(=45^o\right)\)
=> Tứ giác ABCD nội tiếp đường tròn
=> \(\widehat{DCB}+\widehat{DAB}=180^o\)
=> \(\widehat{DCB}=90^o\)
=> DC _|_ BC(đpcm)
b) \(\Delta\)ABD vuông cân tại A nên AD=AB=1
=> BD2=AB2+AD2=12+12=2
Xét \(\Delta\)DCB vuông tại C có:
CD2+BC2=BD2=2
Vậy BC2+CD2=2
Trần Nguyễn Hoài Thư
Bạn tự vẽ hình ( hình dễ lắm nhé )
Giải
Xét \(\Delta ABC\) có :
\(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^O\)
\(\Rightarrow\widehat{BAC}=180^O-80^O-30^O\)
\(\Rightarrow\widehat{BAC}=70\)
Ta có : AD là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{70^O}{2}=35^O\)
Xét \(\Delta ABD\) có :
\(\widehat{ABD}+\widehat{BAD}+\widehat{BDA}=180^O\)
\(\Rightarrow\widehat{ADB}=180^O-35^O-80^O=65^O\) ( Vì \(\widehat{BAD}=35^O;\widehat{ABD}=80^O\) (CMT )
CMTT ta có :
\(\widehat{ADC}=180^O-30^O-35^O=115^O\)
Vậy \(\widehat{ADC}=115^O\) và \(\widehat{ADB}=65^O\)
Chúc bạn học tốt
A B C D F
Từ đỉnh B của \(\Delta\)ABC hạ đường cao BF, nối F với D.
Có \(\Delta\)BFC vuông tại F, ^FBC=900-^ACB=900-600=300 \(\Rightarrow\)FC=1/2BC (Tính chất của tam giác vuông có góc 300)
Mà CD=1/2BC \(\Rightarrow\)CD=FC\(\Rightarrow\Delta\)FCD cân tại C. Lại có: ^FCD=1800-^ACB=1800-600=1200.
\(\Rightarrow\)^CFD=^CDF=300. Ngoài ra: ^FBC=300 \(\Rightarrow\)^CDF=^FBC=300\(\Rightarrow\Delta\)BFD cân tại F\(\Rightarrow\)FB=FD (1)
Tính được: ^FBA=^ABC-^FBC=750-300=450. Mà ^BAC=1800-(^ABC+^ACB)=450\(\Rightarrow\)^FBA=^FAB=450
\(\Rightarrow\Delta\)AFB vuông cân tại F \(\Rightarrow\)FB=FA (2).
Từ (1) và (2) \(\Rightarrow\)FD=FA \(\Rightarrow\Delta\)AFD cân tại F. Ta thấy ^AFD kề bù với ^CFD \(\Rightarrow\)^AFD=1800-^CFD=1500.
\(\Rightarrow\)^FAD=^FDA=150 \(\Rightarrow\)^ADB=^FDA+^CDF=150+300=450.
Vậy ^ADB=450.