K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2022

=> 6x ( x - 1) = 0

=> \(\left[{}\begin{matrix}6x=0\\x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy x = 0 hoặc x = 1

15 tháng 7 2016

a)\(x^2+6x+5=0\)

=>\(x^2+x+5x+5=0\)

=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

Vậy x=-1 hoặc x=-5

b)\(2x^2+6x+4=0\)

=>\(2x^2+2x+4x+4=0\)

=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(2x+4\right)=0\)

=>\(\left(x+1\right)2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)

Vậy x=-1 hoặc x=-2

15 tháng 7 2016

(x^2+6x+9)-4=0

(x+3)^2=4

x+3=2

x=-1

7 tháng 9 2017

Ta có : x+ 6x+ 6x + 1 = 0

=> x3 + 6x2.1 + 6x.12 + 13 = 0

=> (x + 1)3 = 0

=> x + 1 = 0

=> x = -1 

X^3+6x^2+6x+1=0

=>x^3+6x^2x1+6xx1^2+1^3=0

=>(x+1)^3=0

=> x+1=0

=>-1

16 tháng 6 2017

cái j sao khó nhìn vậy

11 tháng 2 2022
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT
16 tháng 3 2017

+)     \(Q=2x^2-6x+x^2+6x-12\)

            \(=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)

            \(=3x^2-12\)

 \(Cho\)           \(Q=0\)   \(\Rightarrow3x^2-12=0\)

                                             \(\Rightarrow3x^2=12\)

                                             \(\Rightarrow x^2=4\)

                                             \(\Rightarrow x=2\)\(hay\)\(x=-2\)

VẬY ........... ( NẾU SAI THÌ THÔI NHÉ    >-<   )

16 tháng 3 2017

\(Q=2x^2-6x+x^2+6x-12\)

\(Q=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)

\(Q=3x^2-12\)

\(\Leftrightarrow3x^2=0+12\)

\(\Leftrightarrow x^2=12:3\)

\(\Leftrightarrow x^2=4=2^2\Rightarrow x=2\)

Vậy với \(x=2\)thì \(Q=0\)

Các bạn nữ (xinh) k và kb làm người yêu mình nha !!!!!!!!!!!!!!!

27 tháng 3 2019

\(B=2x^2-6x+x^2+6x-12\)

\(\Rightarrow B=\left(2x^2+x^2\right)+\left(-6x+6x\right)-12\)

\(\Rightarrow B=3x^2-12\)

\(-\text{ Để B nhận giá trị bằng 0 thì }3x^2-12=0\)

\(\Rightarrow3x^2=12\)

\(\Rightarrow x^2=4\)

\(\Rightarrow x^2=\left(\pm2\right)^2\)

\(\Rightarrow x=\pm2\)

Vậy...

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

10 tháng 7 2016

\(x^2+6x-x-6=0\)

\(x\left(x-1\right)+6\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+6\right)=0\)

\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\x+6=0\Rightarrow x=-6\end{cases}}\)

10 tháng 7 2016

(x^2-x)+(6x-6)=0

x(x-1)+6(x-1)=0

(x-1)(x+6)=0

x=1 và x=-6

a,Cách 1 :  \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)

Cách 2 : Dung p^2 nhẩm nghiệm p^2 bậc 2 vì : 1 - 10 + 9 = 0 

\(\Leftrightarrow\orbr{\begin{cases}x_1=1\\x_2=\frac{c}{a}=9\end{cases}}\)

b, Cách 1 : \(8x^2-2x-15=0\Leftrightarrow\left(4x+5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}\)

Cách 2 : \(\Delta=\left(-2\right)^2-4.8.\left(-15\right)=484>0\)

Pp có 2 nghiệm phân biệt : \(x_1=\frac{-2-\sqrt{484}}{16};x_2=\frac{-2+\sqrt{484}}{16}\)

20 tháng 8 2020

toán 9 à bạn ?

c,\(2x^2+8x-7=0\)

Ta có : \(\Delta=8^2-4.\left(-7\right).2=64+56=120\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-8+\sqrt{120}}{4}=-2+\frac{\sqrt{120}}{4}\\x=\frac{-8-\sqrt{120}}{4}=-2-\frac{\sqrt{120}}{4}\end{cases}}\)

d,\(3x^2-15x+3=0\)

Ta có : \(\Delta=\left(-15\right)^2-4.3.3=225-36=189\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{189}}{6}\\x=\frac{15-\sqrt{189}}{6}\end{cases}}\)

e,\(16x^2-24x-4=0\Leftrightarrow4x^2-6x-1=0\)

Ta có : \(\Delta=\left(-6\right)^2-4.4.\left(-1\right)=36+16=52\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+\sqrt{52}}{8}\\x=\frac{6-\sqrt{52}}{8}\end{cases}}\)

f, \(-5x^2+6x+3=0\)

Ta có : \(\Delta=6^2-4.3.\left(-5\right)=36+60=96\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-6+\sqrt{96}}{-10}\\x=\frac{-6-\sqrt{96}}{-10}\end{cases}}\)

i, \(6x^2-9x+40=0\)

Ta có : \(\Delta=\left(-9\right)^2-4.6.40=81-960=-879\)

do đen ta < 0 => vô nghiệm 

a)

Cách 1:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-x-9x+9=0\)

\(\Leftrightarrow x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\)

Vậy: S={1;9}

Cách 2:

Ta có: \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-10x+25-16=0\)

\(\Leftrightarrow\left(x-5\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=4\\x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy: S={9;1}

b)

Cách 1:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8x^2-12x+10x-15=0\)

\(\Leftrightarrow4x\left(2x-3\right)+5\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

Cách 2:

Ta có: \(8x^2-2x-15=0\)

\(\Leftrightarrow8\left(x^2-\frac{1}{4}x-\frac{15}{8}\right)=0\)

\(\Leftrightarrow x^2-\frac{1}{4}x-\frac{15}{8}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{8}+\frac{1}{64}-\frac{121}{64}=0\)

\(\Leftrightarrow\left(x-\frac{1}{8}\right)^2=\frac{121}{64}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{8}=\frac{11}{8}\\x-\frac{1}{8}=-\frac{11}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{12}{8}=\frac{3}{2}\\x=\frac{-11+1}{8}=\frac{-10}{8}=\frac{-5}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3}{2};\frac{-5}{4}\right\}\)

c) Ta có: \(2x^2+8x-7=0\)

\(\Leftrightarrow2\left(x^2+4x-\frac{7}{2}\right)=0\)

\(\Leftrightarrow x^2+4x+4-\frac{15}{2}=0\)

\(\Leftrightarrow\left(x+2\right)^2=\frac{15}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=\sqrt{\frac{15}{2}}\\x+2=-\sqrt{\frac{15}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{15}{2}}-2\\x=-\sqrt{\frac{15}{2}}-2\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{\frac{15}{2}}-2;-\sqrt{\frac{15}{2}}-2\right\}\)

d) Ta có: \(3x^2-15x+3=0\)

\(\Leftrightarrow3\left(x^2-5x+1\right)=0\)

\(\Leftrightarrow x^2-5x+1=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{21}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{21}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5}{2}=\frac{\sqrt{21}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{21}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{\sqrt{21}+5}{2}\\x=\frac{-\sqrt{21}+5}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{\sqrt{21}+5}{2};\frac{-\sqrt{21}+5}{2}\right\}\)

e) Ta có: \(16x^2-24x-4=0\)

\(\Leftrightarrow4\left(4x^2-6x-1\right)=0\)

\(\Leftrightarrow4x^2-6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{13}{4}=0\)

\(\Leftrightarrow\left(2x-\frac{3}{2}\right)^2=\frac{13}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{3}{2}=\frac{\sqrt{13}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{13}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\frac{3+\sqrt{13}}{2}\\2x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}:2=\frac{3+\sqrt{13}}{4}\\x=\frac{3-\sqrt{13}}{2}:2=\frac{3-\sqrt{13}}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+\sqrt{13}}{4};\frac{3-\sqrt{13}}{4}\right\}\)

f) Ta có: \(-5x^2+6x+3=0\)

\(\Leftrightarrow-5\left(x^2-\frac{6}{5}x-\frac{3}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{6}{5}x-\frac{3}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{5}+\frac{9}{25}-\frac{24}{25}=0\)

\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\frac{24}{25}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{5}=\frac{2\sqrt{6}}{5}\\x-\frac{3}{5}=\frac{-2\sqrt{6}}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+2\sqrt{6}}{5}\\x=\frac{3-2\sqrt{6}}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{3+2\sqrt{6}}{5};\frac{3-2\sqrt{6}}{5}\right\}\)

i) Ta có: \(6x^2-9x+40=0\)

\(\Leftrightarrow6\left(x^2-\frac{3}{2}x+\frac{20}{3}\right)=0\)

\(\Leftrightarrow x^2-\frac{3}{2}x+\frac{20}{3}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{293}{48}=0\)

\(\Leftrightarrow\left(x-\frac{3}{4}\right)^2+\frac{293}{48}=0\)(vô lý)

Vậy: \(S=\varnothing\)