Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn
Ta có: \(\hept{\begin{cases}\left(3x-2y\right)^{2020}\ge0;\forall x,y,z\\\left(5y-3z\right)^{2000}\ge0;\forall x,y,z\\|2z-5x|\ge0;\forall x,y,z\end{cases}}\)
\(\Rightarrow\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|\ge0;\forall x,y,z\)
Do đó \(\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^{2020}=0\\\left(5y-3z\right)^{2000}=0\\|2z-5x|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=2y\\5y=3z\\2z=5x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\\\frac{z}{5}=\frac{x}{2}\end{cases}}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{5}{0}\)( vô lý )
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Áp dụng tính chất của dãy tỷ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{2}=2\Rightarrow y=4\)
\(\frac{z}{3}=2\Rightarrow z=6\)
Vậy x = 10 , y = 4 , z = 6
a) \(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=3k\end{cases}}\)
\(\Rightarrow2.5k-3.2k+5.3k=38\)
\(\Rightarrow10k-6k+15k=38\)
\(\Rightarrow19k=38\)
\(\Rightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=10\\y=4\\z=6\end{cases}}\)
a)
TH1: x+2 =2019x+2020
x-2019x=2020-2
x(1-2019)=2018
x. (-2018)=2018
x=2018:(-2018)
x=-1
TH2: x+2 = -(2019x+2020)
x+2 =-2019x -2020
x+2019x = -2020-2
2020x=-2022
x=-2022:2020= - 1011/1010