\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

   ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

\(\frac{2x+1}{3}=\frac{5}{2}\)

\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)

2x=  15/2 - 1 = 13/2

x = 13/2 : 2

x = 13/4 

b) 2x + 2x+1 + 2x+2 + 2x+3 = 480

2x.(1+ 2 +22 + 23) = 480

2x . 15 = 480

2x = 480 : 15 = 32

2x = 25 => x = 5

c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)

\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)

\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)

< = > 3x=  -6 => x = -2

 

5 tháng 5 2016

Hỏi đáp Toán

10 tháng 6 2016

\(B=\frac{1}{4}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}\right)\)

Xét \(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}>\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}=\frac{1}{9}.5=\frac{5}{9}>\frac{1}{2}\)

và \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{19}+\frac{1}{19}+...+\frac{1}{19}=\frac{1}{19}.10=\frac{10}{19}>\frac{1}{2}\)

Do đó \(B>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=\frac{5}{4}>1\)

13 tháng 1 2017

ình cũng định hỏi câu này

15 tháng 1 2017

Lương Nhất Chi

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\\ =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\\=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right) \\ =\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\)

Đừng giận nữa nha má !!!!

27 tháng 1 2017

b) Ta có:

\(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(\Rightarrow B=\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{1}{2016}+1\right)+1\)

\(\Rightarrow B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}\)

\(\Rightarrow B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)}=\frac{1}{2017}\)

Vậy \(\frac{A}{B}=\frac{1}{2017}\)

23 tháng 5 2016

\(\frac{1}{7}\)B=\(\frac{5}{2.7.1}+\frac{4}{1.7.11}+\frac{3}{11.2.7}+\frac{1}{2.7.15}+\frac{13}{15.4.7}\)

\(\frac{1}{7}\)B=\(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{1}{7}B=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

\(\frac{1}{7}B=\frac{1}{2}-\frac{1}{28}\)

\(\frac{1}{7}B=\frac{13}{28}\)

B=\(\frac{13}{28}:\frac{1}{7}\)

B=\(\frac{13}{4}\)

1 tháng 5 2019

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7

1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28

17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128

17B=12−12817B=12−128

17B=132817B=1328

B=1328:171328:17

B=134

5 tháng 5 2016
x 7 9 
x2 49 81 
x2-49-0+++
x2-81---0+
A+0-0+

dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9

5 tháng 5 2016

b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)

            =1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)

                (2015 số 1)

            =1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))

            =\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)

            =2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))

            =2016(\(\frac{1}{2}\)+\(\frac{1}{3}\)+.......+\(\frac{1}{2015}\)+\(\frac{1}{2016}\))
vậy x= 2016

a: \(=\dfrac{17}{4}-\dfrac{37}{100}+\dfrac{1}{8}-\dfrac{32}{25}-\dfrac{5}{2}+\dfrac{7}{2}\)

\(=\dfrac{35}{8}+\dfrac{8}{8}-\dfrac{37}{100}-\dfrac{128}{100}\)

\(=\dfrac{43}{8}-\dfrac{165}{100}=\dfrac{149}{40}\)

b: \(=\left(\dfrac{22\cdot26+3\cdot10-65}{130}\right):\left(\dfrac{4\cdot22-2\cdot26+3\cdot143}{286}\right)\)

\(=\dfrac{537}{130}\cdot\dfrac{286}{465}=\dfrac{1969}{775}\)

10 tháng 5 2016

Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(Q=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+10}\)

\(Q=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+....+\frac{1}{\frac{10.\left(10+1\right)}{2}}\)

\(Q=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{10.11}{2}}\)

\(Q=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)

\(\frac{1}{2}Q=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)

=>\(Q=\frac{9}{22}.2=\frac{9}{11}\)

10 tháng 5 2016

 

\(Q=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\\ \Rightarrow\frac{1}{2}Q=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)

Tiếp theo tự tính nhéhahaToán lớp 6