\(6a^2-7ab+2b^2=0\)

giải giúp mình vs

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>6a^2-3ab-4ab+2b^2=0

=>3a(2a-b)-2b(2a-b)=0

=>(2a-b)(3a-2b)=0

=>3a=2b hoặc 2a=b

=>a=2/3b hoặc a=1/2b

3 tháng 9 2016

Để khi nào rảnh t làm cho

3 tháng 9 2016

Chớ máy t hết pin rồi 

30 tháng 4 2019

P=a2b+ab2-\(\frac{\left(a+b\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{\left(4ab\right)^2-2ab}{6a^2b^2}\)=a2b+ab2-\(\frac{16a^2b^2}{6a^2b^2}\)+\(\frac{2ab}{6a^2b^2}\)

=a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)

Áp dụng Bất đẳng thức Cauchy cho 3 số dương, ta được:

P==a2b+ab2-\(\frac{8}{3}\)+\(\frac{1}{3ab}\)\(\ge\)3.\(\sqrt[3]{a^3b^3\frac{8}{3}}\)+\(\frac{1}{3ab}\)=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)

Áp dụng Bất đẳng thức Cauchy cho 2 số dương, ta được:

P=\(\frac{6}{\sqrt[3]{3}}\).ab+\(\frac{1}{3ab}\)\(\ge\)2.\(\sqrt{\frac{6}{\sqrt[3]{3}}.ab.\frac{1}{3ab}}\)=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)

Vậy MinP=\(\frac{2\sqrt{6}}{\sqrt[6]{3}}\)

30 tháng 4 2019

\(-\frac{8}{3}\)có phải là số không âm đâu mà áp dụng BĐT Cosi

16 tháng 3 2020

từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ

23 tháng 4 2019

Có chắc là GTLN không vậy, làm mãi không ra

24 tháng 4 2019

Có anh ạ, bài này hỏi cả GTLN và GTNN, nhưng hôm trước em gửi câu hỏi trước em chỉ ghi GTNN nên chị Linh Chi đã giải giúp em rồi, giờ em hỏi thêm GTLN nữa.

13 tháng 7 2016

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

13 tháng 7 2016

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

22 tháng 4 2019

\(P=a^2+a^2+b^2+b^2+ab-2ab-6a+3b+6b+2020\)

\(=\left(a^2+b^2+ab+3b\right)+\left(a^2+b^2-2ab-6a+6b+9\right)-9+2020\)

\(=0+\left(a-b-3\right)^2+2011\ge2011\)

Dấu "="  xảy ra <=> a-b-3=0 <=> a=b+3 thế vào \(a^2+b^2+ab+3b=0\). Ta có:

\(\left(b+3\right)^2+b^2+b\left(b+3\right)+3b=0\)

<=> \(3b^2+12b+9=0\Leftrightarrow\orbr{\begin{cases}b=-1\\b=-3\end{cases}}\)

+) Với b=-1 

ta có:  a=-1+3=2 

Nên a+b=1 >-2 loại

+) Với b=-3

Ta có: a=-3+3=0

Nên  a+b=0+-3<-2 tm

Vậy min P=2011 khi và chỉ khi a=0; b=-3

22 tháng 4 2019

Em cảm ơn c Nguyễn Linh Chi ạ!