\(\Delta ABC\)vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM=BA; CN=CA....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

A C B D E O N M

a) Ta có \(\widehat{B}+\widehat{C}=90^o\) mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2};\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\) nên \(\widehat{B_2}+\widehat{C_2}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác BOC, có \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\Rightarrow\widehat{BOC}=180^o-45^o=135^o\)

b) Xét tam giác BAD và BMD có:

Cạnh BD chung

\(\widehat{B_1}=\widehat{B_2}\)

AB = MB  (gt)

\(\Rightarrow\Delta BAD=\Delta BMD\left(c-g-c\right)\)

\(\Rightarrow\widehat{BMD}=\widehat{BAD}=90^o\)

Hoàn toàn tương tự \(\Delta EAC=\Delta ENC\left(c-g-c\right)\Rightarrow\widehat{ENC}=\widehat{EAC}=90^o\)

Ta có EN và DM cùng vuông góc với BC nên EN // DM

c) Theo câu b, \(\Delta BAD=\Delta BMD\Rightarrow AD=MD;\widehat{BDA}=\widehat{BDM}\)

Từ đó ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow OA=OM.\)

Tương tự : \(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow OA=ON.\)

Vậy nên OA = OM = ON

d) Ta có \(\Delta OAD=\Delta OMD\left(c-g-c\right)\Rightarrow\widehat{OAD}=\widehat{OMD}\)

\(\Delta OAE=\Delta ONE\left(c-g-c\right)\Rightarrow\widehat{OAE}=\widehat{ONE}\)

\(\Rightarrow\widehat{ONE}+\widehat{OMD}=\widehat{OAE}+\widehat{OAD}=\widehat{EAD}=90^o\)

\(\Rightarrow\widehat{NOM}=90^o\)  (Dạng bài qua O kẻ đường thẳng song song với EN và DM)

Vậy tam giác OMN vuông cân hay \(\widehat{ONM}+\widehat{OMN}=90^o\)

Xét tam giác AMN có \(\widehat{MAN}+\widehat{ANM}+\widehat{AMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{ANO}+\widehat{ONM}+\widehat{AMO}+\widehat{OMN}=180^o\)

\(\Leftrightarrow\widehat{MAN}+\widehat{NAO}+\widehat{MAO}=180^o-90^o=90^o\)

\(\Leftrightarrow\widehat{2MAN}=90^o\)

\(\Leftrightarrow\widehat{MAN}=45^o\)

21 tháng 2 2018

ko ai giải p c à

17 tháng 1 2018

~ Tự vẽ hình nha ~
Chứng minh :
a) BD là phân giác của \(\widehat{ABC}\)\(\widehat{ABD}=\widehat{CBD}=\dfrac{\widehat{ABC}}{2}\)
CE là phân giác của \(\widehat{BCA}\)\(\widehat{ACE}=\widehat{BCE}=\dfrac{\widehat{ACB}}{2}\)
\(\Rightarrow\widehat{CBD}+\widehat{BCE}=\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{BCA}}{2}=\dfrac{\widehat{ABC}+\widehat{BCA}}{2}=\dfrac{90^o}{2}=45^o\)
\(\widehat{BOC}+\widehat{OBC}+\widehat{BCO}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)\(\widehat{BOC}+45^o=180^o\)
\(\widehat{BOC}=180^o-45^o\)
\(\widehat{BOC}=135^o\)
b) Xét △BDA và △BDM có :
BA = BM ( gt )
\(\widehat{ABD}=\widehat{MBD}\text{ ( gt )}\)
BD - cạnh chung
⇒ △BDA = △BDM ( c.g.c )
\(\widehat{BAD}=\widehat{BMD}\text{ ( tương ứng )}\)
\(\widehat{BMD}\text{ }=90^o\)
Tương tự :
△EAC=△ENC ( c.g.c)
\(\widehat{EAC}=\widehat{ENC}\text{ ( tương ứng )}\)
\(\widehat{DMN}+\widehat{ENM}=90^o+90^o=180^o\)
\(\widehat{DMN}\text{ và }\widehat{ENM}\text{ là 2 góc trong cùng phía }\)
⇒ EN // DM

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
17 tháng 1 2018

A H N M B C

Vẽ hình đã, lát onl t lm tiếp!

17 tháng 1 2018

Nếu không làm đc thì tôi làm cho.

7 tháng 2 2021

giúp tui với!

5 tháng 8 2019

Bạn tham khảo câu a ở link này:

Câu hỏi của Nguyễn Tiến Vững - Toán lớp 7 - Học toán với OnlineMath