Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(\left(x-3\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}\left(x-3\right)^2=4^2\\\left(x-3\right)^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x-3=4\\x-3=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)
Vậy x = 7 hoặc x = -1
+) \(\left(1-3x\right)^3=-64\)
\(\Rightarrow\left(1-3x\right)^3=\left(-4\right)^3\)
\(\Rightarrow1-3x=-4\)
\(\Rightarrow3x=1+4\)
\(\Rightarrow3x=5\)
\(\Rightarrow x=5:3\)
\(\Rightarrow x=\frac{5}{3}\)
Vậy \(x=\frac{5}{3}\)
+) \(x^{13}=27.x^{10}\)
\(\Rightarrow x^{13}:x^{10}=27\)
\(\Rightarrow x^3=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
Vậy x = 3
+) \(\left(4x-1\right)^2=\left(1-4x\right)^4\)
\(\Rightarrow\left(4x-1\right)^2=\left(4x-1\right)^4\)
\(\Rightarrow\left(4x-1\right)^2-\left(4x-1\right)^4=0\)
\(\Rightarrow\left(4x-1\right)^2\left[1-\left(4x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\1-\left(4x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^2=0\\\left(4x-1\right)^2=1\end{cases}}\)
TH 1 : \(\left(4x-1\right)^2=0\Rightarrow4x-1=0\Rightarrow4x=1\Rightarrow x=\frac{1}{4}\)
TH 2 : \(\left(4x-1\right)^2=1\Rightarrow\orbr{\begin{cases}4x-1=1\\4x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}4x=2\\4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}\)
_Chúc bạn học tốt_
a, (x-3)^2 = 16
=> (x-3)^2=4^2
=> x-3=4
=> x= 4+3
=> x = 7 .Vậy x =7
b,(1-3x)^3 = 64
=> ( 1-3x)^3 = 4^3
=> 1-3x = 4
=> 3x = 1-4
=> 3x = -3
=> x = -1 . Vậy x = -1
c, x^13 = 27.x^10
=> x^13 : x^10 = 27
=> x^3 = 3^3
=> x = 3 . Vậy x = 3
Giải:
a) Để đa thức có nghiệm
\(\Leftrightarrow x^2-64=0\)
\(\Leftrightarrow x^2=64\)
\(\Leftrightarrow x=\pm8\)
Vậy ...
d) Để đa thức có nghiệm
\(\Leftrightarrow x^2-81=0\)
\(\Leftrightarrow x^2=81\)
\(\Leftrightarrow x=\pm9\)
Vậy ...
h) Để đa thức có nghiệm
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow\left(x-6\right)x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy ...
Các câu còn lại làm tương tự.
a, x\(^2\) - 64 = 0
\(\Rightarrow\) x\(^2\) = 0 + 64
= 64
= 8\(^2\)
\(\Rightarrow\) x = 8
Vậy nghiệm của \(x^2-64\) là 8
d, \(x^2-81\) = 0
\(\Rightarrow\) x\(^2\) = 81
= 9\(^2\)
\(\Rightarrow\) x = 9
vậy nghiệm của \(x^2-81\) là 9
a. x2 - 1/4 = 0
x2 = 1/4
x2 = (1/2)2
=>x=1/2
b. x2 + 16 = 0
=>x2= -16 (vô lí)
=>ko tồn tại x tm~
c. x3 + 27 = 0
x3= -27
x3= (-3)3
=>x= -3
d. 2x3 - 16 = 0
x3 - 8 = 0
x3=8=23
=>x=2
e.[( - 0,5)3] = 1/64 =>????
h. (2n)2 = 64
22n=26
=>2n=6 => n=3
a) x = 1/2 hoặc x = -1/2
b) Ko có giá trị của x thỏa mãn
c) x = -3
d) x = 2 hoặc x = -2
e) Ko thấy x thì sao giải đc
h) n = 3
\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{150}:x=\left(-\dfrac{4}{3}\right)^{135}\)
\(\Leftrightarrow x=\left(\dfrac{4}{3}\right)^{150}:\left(-\dfrac{4}{3}\right)^{135}=-\left(\dfrac{4}{3}\right)^{15}\)
Nỗi hứng lm cho vui!
Bài 1:
a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)
Vì \(\left(x-2\right)^2\ge0\) => H \(\ge\) 12
=> Dấu = xảy ra <=> \(x=2\)
b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)
= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)
= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)
= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)
Vì \(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)
Bài 2:
a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)
= \(-\left(x+2\right)^2+20\le20\)
=> Dấu = xảy ra <=> \(x=-2\)
b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)
= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)
= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)
= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)
Vì \(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)
\(\left(x+1\right)^2=81\)
\(\Rightarrow\left(x+1\right)^2=9^2\)
\(\Rightarrow x+1=9\)
\(\Rightarrow x=9-1=8\)
Vậy x = 8
b, \(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=\left(-4\right)-5\)
\(\Rightarrow x=-9\)
Vậy x = -9
c, \(\left(2x-3\right)^2=9\)
\(\Rightarrow\left(2x-3\right)^2=3^2\)
\(\Rightarrow2x-3=3\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy x = 3
d, \(\left(4x+1\right)^3=27\)
\(\Rightarrow\left(4x+1\right)^3=3^3\)
\(\Rightarrow4x+1=3\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
\(a,16^x:4^x=16\)
\(\left(4^x\right)^2:4^x=4^2\)
\(\Rightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,2^{-1}.2^x+4.2^x=72\)
\(\Rightarrow2^{x-1}+2^{x+2}=72\)
\(\Rightarrow2^{x-1}\left(1+2^3\right)=72\)
\(\Rightarrow2^{x-1}=72:9=8=2^3\)
\(\Rightarrow x=4\)
\(c,\left(2^x+1\right)^3=-64\)
\(\Rightarrow2^x+1=-4\)
\(\Rightarrow2^x=-5\)
Bài làm:
\(64^3.4^5.16^2=2^{18}.2^{10}.2^8=2^{36}\)
\(25^{20}.125^4=5^{40}.5^{12}=5^{52}\)
\(x^7.x^4.x^3=x^{14}\)
64^3.4^5.16^2=2^18.2^10..2^8=36
25^20.125^4=5^40.5^12=5^52
x^7.x^4.x^3=x^14