Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(64^2.81^3.34\div2^{13}.3^9.17\)
\(=\left(2^6\right)^2.\left(3^4\right)^3.2.17\div2^{13}.3^9.17\)
\(=2^{12}.3^{12}.2.17\div2^{13}.3^9.17\)
\(=\left(2^{12}.2\div2^{13}\right).\left(3^{12}.3^9\right).\left(17.17\right)\)
\(=1.3^{21}.17^2\)
\(=3^{21}.17^2\)
Bạn ơi nếu dấu chia kia là phân số thì làm theo cách dưới đây , còn không phải thì làm theo cách kia
\(\frac{64^2.81^3.34}{2^{13}.3^9.17}=\frac{\left(2^6\right)^2.\left(3^4\right)^3.2.17}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=\frac{2^{13}.3^{12}.17}{2^{13}.3^9.17}=3^3=27\)
a) Ta có: \(\left[\frac{3}{7}\cdot\frac{4}{15}+\frac{1}{3}\cdot\left(9^{15}\right)\right]^0\cdot\frac{1}{3}\cdot\frac{6^{12}}{12^4}\)
\(=\frac{1}{3}\cdot\frac{6^{12}}{6^4\cdot2^4}=\frac{6^{12}}{6^4\cdot48}=\frac{\left(6^4\right)^3}{6^4\cdot48}=\frac{6^8}{48}=34992\)
b) Ta có: \(\frac{10^2\cdot81-16\cdot15^2}{4^4\cdot675}=\frac{2^2\cdot5^2\cdot3^4-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}\)
\(=\frac{2^25^23^2\left(3^2-2^2\right)}{\left(2^2\right)^4\cdot3^3\cdot5^2}=\frac{\left(3^2-2^2\right)}{64\cdot3}=\frac{5}{192}\)
\(\frac{4^3\cdot9^3}{8^2\cdot81^2}=\frac{2^6\cdot3^6}{2^6\cdot3^8}=\frac{1}{3^2}=\frac{1}{9}\)
\(\frac{4^3.9^3}{8^2.81^2}=\frac{\left(2^2\right)^3.\left(3^2\right)^3}{\left(2^3\right)^2.\left(3^4\right)^2}=\frac{2^6.3^6}{2^6.3^8}=\frac{1}{9}\)
\(\frac{1}{13}+\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\)
\(=\frac{1}{13}+\left[\frac{3}{13\cdot23}+\frac{3}{23\cdot33}+...+\frac{3}{1993\cdot2003}\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13\cdot23}+\frac{1}{23\cdot33}+...+\frac{1}{1993\cdot2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\left[\frac{1}{13}-\frac{1}{2003}\right]\right]\)
\(=\frac{1}{13}+\left[\frac{3}{10}\cdot\frac{1990}{26039}\right]\)
\(=\frac{1}{13}+\frac{597}{26039}\)
\(=\frac{200}{2003}\)
Đặt A= 1/13 + 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
A- 1/13 = 3/13.23 + 3/ 23.33 + ... + 3/1993.2003
10/3 ( A-1/3) = 10/3. (3/13.23 + 3/ 23.33 + ... + 3/1993.2003)
10/3A - 10/9 = 10/13.23 + 10/ 23.33 + ... + 10/1993.2003
10/3A - 10/9 = 1/13 - 1/23 + 1/23 - 1/33 +...+ 1/1993- 1/2003
10/3A = 1/13 - 1/2003 + 10/9
10/3 A= ?
đến đây bn tự làm nha
10/3A - 10/9 = 1/13
a) \(\frac{-2}{3}\)- 3x = 0,75 + 5x
3x + 5x = \(\frac{-2}{3}\)- 0,75
8x = \(\frac{-17}{12}\)
x = \(\frac{-17}{12}\): 8
x =\(\frac{-17}{96}\)
Vậy x = \(\frac{-17}{96}\)
b) \(\frac{11}{12}\)- (\(\frac{2}{5}\)+ x ) = \(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{11}{12}\)-\(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{1}{4}\)
x = \(\frac{1}{4}\)- \(\frac{2}{5}\)
x = \(\frac{-3}{20}\)
Vậy x = \(\frac{-3}{20}\)
Bạn muốn nộp sớm thì tự đi mà làm cho nhanh đã nhờ rồi mà còn đòi hỏi các kiểu. Đúng là lười biếng. Hức...
\(\frac{\left(2^6\right)^2.\left(3^4\right)^3.34}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2}{2^{13}.3^9}=3^3=27\)
thanks