K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(64-\frac{1}{4x^2}=0\)            ĐK  X\(\ne\) 0

=> \(\frac{1}{\left(2x\right)^2}=64\)

=>  \(\frac{1}{\left(2x\right)^2}=8^2\)

=>  \(\frac{1}{2x}=8\)

=>  \(\frac{1}{2x}-\frac{16x}{2x}=0\)\

=> \(1-6x=0\)

=>  \(x=\frac{1}{6}\)( TMĐK)

16 tháng 10 2021

64 - \(\frac{1}{4}x^2=0\)

\(^{8^2-\left(\frac{1}{2}x\right)^2}=0\)

\(\left(8-\frac{1}{2}\right)\left(8+\frac{1}{2}\right)=0\)

\(\orbr{\begin{cases}8-\frac{1}{2}x=0\\8+\frac{1}{2}x=0\end{cases}}\)

\(\orbr{\begin{cases}\frac{1}{2}x=8\\\frac{1}{2}x=-8\end{cases}}\)

\(\orbr{\begin{cases}x=16\\x=-16\end{cases}}\)

Vậy x = 16 và x = -16

7 tháng 9 2021

a) \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b) \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(9-6x+x^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: Ta có: \(x^2-64=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)

b: Ta có: \(4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

hay \(x=\dfrac{1}{2}\)

c: ta có: \(x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

hay x=3

2 tháng 6 2018

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 6 2018

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

6 tháng 10 2020

a) \(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)

b) \(3x\left(x-2\right)-5x+10=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)

c) \(4x\left(x+3\right)-x^2+9=0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)

d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow3x\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

6 tháng 10 2020

e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)

f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)

g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)

6 tháng 10 2020

a) 4x3 - 9x = 0

<=> x( 4x2 - 9 ) = 0

<=> x( 2x - 3 )( 2x + 3 ) = 0

<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0

<=> x = 0 hoặc x = ±3/2

b) 3x( x - 2 ) - 5x + 10 = 0

<=> 3x( x - 2 ) - 5( x - 2 ) = 0

<=> ( x - 2 )( 3x - 5 ) = 0

<=> x - 2 = 0 hoặc 3x - 5 = 0

<=> x = 2 hoặc x = 5/3

c) 4x( x + 3 ) - x2 + 9 = 0

<=> 4x( x + 3 ) - ( x2 - 9 ) = 0

<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0

<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0

<=> ( x + 3 )( 4x - x + 3 ) = 0

<=> ( x + 3 )( 3x + 3 ) = 0

<=> x + 3 = 0 hoặc 3x + 3 = 0

<=> x = -3 hoặc x= -1

d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )

<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0

<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0

<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0

<=> ( x - 4 ).3x = 0

<=> x - 4 = 0 hoặc 3x = 0

<=> x = 4 hoặc x = 0

e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )

<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0

<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0

<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0

<=> ( 4x - 5 )( 2x + 4 ) = 0

<=> 4x - 5 = 0 hoặc 2x + 4 = 0

<=> x = 5/4 hoặc x = -2

f) ( x + 1/5 )2 = 64/9

<=> ( x + 1/5 )2 = ( ±8/3 )2

<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3

<=> x = 37/15 hoặc x = -43/15

g) 9( x + 2 )2 = ( x + 3 )2

<=> 32( x + 2 )2 - ( x + 3 )2 = 0

<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0

<=> ( 3x + 6 )2 - ( x + 3 )2 = 0

<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0

<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0

<=> ( 2x + 3 )( 4x + 9 ) = 0

<=> 2x + 3 = 0 hoặc 4x + 9 = 0

<=> x = -3/2 hoặc x = -9/4

22 tháng 10 2018

393 NHÉ

15 tháng 11 2018

a) \(x^3+64=0\)

\(x^3=0-64\)

\(x^3=-64\)

\(x^3=-4^3\)

\(\Rightarrow x=-4\)

b)Tương tự

12 tháng 7 2017

bài 1:

a. x- 5=0

=>x2 = 0+5 = 5

=> x = \(\sqrt{5}\)

vậy x= \(\sqrt{5}\)

sorry biết mỗi a thôi

a) x2 - 5 = 0

    x2       = 0 + 5

    x2        = 5

=> x = \(\sqrt{5}\)

Vậy ...

29 tháng 9 2015

a/ => x3 = 64 => x3 = 43 => x = 4

b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0 

=> 3x2 - 22x - 16 = 0

=> (x - 8)(3x + 2) = 0

=> x - 8 = 0 => x = 8

hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3

Vậy x = 8 ; x = -2/3

c/ => x3 - x2 - 4x2 + 8x - 4 = 0 

=> x3 - 5x2 + 8x - 4 = 0 

=> (x - 2)2 (x - 1) = 0

=> (x - 2)2 = 0 => x - 2 = 0 => x = 2

hoặc x - 1 = 0 => x = 1 

Vậy x = 2 ; x = 1

 

17 tháng 8 2015

a) x^4 - 2x^2 + 1 = 0 

=> ( x^2 - 1 )^2 = 0 

=> x^2 - 1 = 0 

=> x^2 = 1 

=> x = 1 hoặc x = -1 

4 tháng 12 2016

a) x4-2x2+1=0

(thang Tran giải rồi nhé)

b) x4-2x2-8=0

<=> x^4 - 2x^2 +1 -9 =0 

<=>  (x^2 -1)^2 -9 =0

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=-3\\x^2-1=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-2\left(VN\right)\\x=+_-\sqrt{2}\end{cases}}}\)

Vậy x=+- căn 2

c) x4-4x2-60=0

\(\Leftrightarrow x^4-4x^2+4-64=0\)

\(\Leftrightarrow\left(x^2-2\right)-64=0\)

\(\Leftrightarrow\left(x^2+62\right)\left(x^2-66\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+62=0\\x^2-66=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-62\left(VN\right)\\x^2=+_-\sqrt{66}\end{cases}}}\)

Vậy x=+- căn 66

d) x6-16x2+64=0