Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức: (n-2)n(n+2) = n3 - 4n => n3 = (n-2).n.(n+2) + 4n
b18) Áp dụng: ta có: 23 = 4.2; 43 = 2.4.6 + 4.4 ; 63 = 4.6.8 + 4.6; ...; 1003 = 98.100.102 + 4.100
=> A = 4.2 + 2.4.6 + 4.4 + 4.6.8 + 4.6 +...+ 98.100.102 + 4.100
= (2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102 ) + 4.(2 + 4 + 6 + ...+ 100) = B + 4.C
Tính B = 2.4.6 + 4.6.8 + 6.8.10 +....+ 98.100.102
=> 8.B = 2.4.6.8 + 4.6.8.8 + 6.8.10.8 +...+ 98.100.102.8
= 2.4.6.8 + 4.6.8 (10 - 2) + 6.8.10.(12 - 4) +...+ 98.100.102.(104 - 96)
= 2.4.6.8 + 4.6.8.10 - 2.4.6.8 + 6.8.10.12 - 4.6.8.10 +...+ 98.100.102.104 - 96.98.100.102
= (2.4.6.8 + 4.6.8.10 + 6.8.10.12 +...+ 98.100.102.104) - (2.4.6.8 + 4.6.8.10 +...+ 96.98.100.102)
= 98.100.102.104
=> B =98.100.102.104 : 8 = 12 994 800
C = 2+ 4+ 6 +..+100 = (2+100) . 50 : 2 = 2550
Vậy A = B +4C = 12 994 800 + 4. 2550 = 13 005 000
a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)
\(\left(b+3\right)^4\ge0\left(\forall b\right)\)
\(\left(5c-6\right)^2\ge0\left(\forall c\right)\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)
Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)
=> Vô lí
=> Phương trình vô nghiệm
b;c Tương tự
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3.1}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=\frac{-27}{ }\)
\(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=9^9\)
b) Vì 9 > 8 => 89 < 99
Vậy \(2^{27}<3^{18}\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{3^5.2^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
Ta có: \(A=3+3^2+3^3+...+3^{2008}\)
\(3A=3^2+3^3+3^4+...+3^{2009}\)
\(3A-A=3^{2009}-3\)
Hay \(2A=3^{2009}-3\)
\(\Rightarrow2A+3=3^x\)
\(\Rightarrow\left(3^{2009}-3\right)+3=3^x\)
\(\Rightarrow3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Hok tốt nha^^
Có A=3+32+...+32008
=>3A=32+33+...+32009
=>3A-A=2A=32009-3
Thay 2A vào 2A+3=3x
Ta được: 32009-3+3=3x
=>32009=3x
=>x=2009
Vậy..
Ta có: \(A=3^1+3^2+3^3+....+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)
= 3.(1+3+32)+34.(1+3+32)+....+328.(1+3+32)
= 3.13 + 34.13 + .....+ 328.13
= 13.(3+34+...+328) chia hết cho 13
Vậy A chia hết cho 13
\(A=3^1+3^2+3^3+....+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^3\left(1+2+3\right)+...+3^{28}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^3+...+3^{28}\right)\)
\(=13\left(3+3^3+...+3^{28}\right)\)\(⋮\)\(13\)
Vậy A chia hết cho 13
45^10.5^20/75^15=243
0.8^5/0.4^6=80
2^15=9^4/6^6x8^3=9
1/3=3^-1
1/9=3^-2
99.99=9801<9999=>99^20<9999^10
-129600000
ông đi qua, bà đi lại, có j eat, cho tôi một miếng tk.
\(\frac{6^3+3.6^2+3^3}{-13}\)\(=\frac{6^2.\left(6+3\right)+3^3}{-13}\)\(=\frac{6^2.9+3^3}{-13}\)\(=\frac{6^2.3^2+3^3}{-13}\)\(=\frac{3^2.\left(6^2+3\right)}{-13}\)\(=\frac{3^2.39}{-13}\)\(=3^2.\left(-3\right)\)\(=-3^3=-27\)
_Học_tốt_