Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
còn phần d hình như sai đề
nếu sửa 16->169 thì tính được đó
a)= 23.(19-14)+1
=8.6+1
=49
b)=102-[60:(56-4-3.5)]
=100-[60:(25-15)]
=100-[60:10]
=100-6=94
c)=160:{17+[32.5-(14+211-8)]}
=160:{17+[45-14-8]}
=160:{17+23}
=160:40
=4
\(a.\) \(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3.3^2.2^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3}{-13}\)
\(=\frac{3^3.\left(2^3+2^2+1\right)}{-13}=\frac{3^3.13}{-13}=\frac{3^3.\left(-1\right)}{1}=-27\)
\(b.\)\(A=2^2+4^2+6^2+...+20^2=2^2\left(1+2^2+3^2+...+10^2\right)\)
\(A=2^2.\frac{10.\left(10+1\right).\left(2.10+1\right)}{6}=4.385=1540\)
( Ta có: công thức tính tổng bình phương liên tiếp tứ 1 đến n là: \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\))
\(c.\)\(B=100^2+200^2+...+1000^2=\left(100.1\right)^2+\left(100.2\right)^2+...+\left(100.10\right)^2\)
\(B=100^2.1^2+100^2.2^2+...+100^2.10^2=100^2.\left(1^2+2^2+...+10^2\right)\)
Áp dụng công thức \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có: \(B=100^2\times385=3,850,000\)
em cháo anh
em giải được đấy
dạ 534537678657gbjgffgbnsy n58ynvu g3yvt7845y75y4 ko làm mà đòi có ăn
Đặt \(A=\frac{3^2\cdot4^2\cdot2^{32}}{11\cdot2^{13}\cdot4^{11}-16^9}\)
\(A=\frac{3^2\cdot\left(2^2\right)^2\cdot2^{32}}{11\cdot2^{13}\cdot\left(2^2\right)^{11}-16^9}\)
\(A=\frac{3^2\cdot2^4\cdot2^{32}}{11\cdot2^{13}\cdot2^{22}-16^9}=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-\left(2^4\right)^9}\)
\(A=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-2^{36}}\)
\(A=\frac{3^2\cdot2^{36}}{11\cdot2^{35}-2\cdot2^{35}}\)
\(A=\frac{3^2\cdot2^{36}}{\left(11-2\right)\cdot2^{35}}=\frac{9\cdot2^{36}}{9\cdot2^{35}}=\frac{2^{36}}{2^{35}}=2\)
Bài làm:
\(\frac{3^2.4^2.2^{32}}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3^2.\left(2^2\right)^2.2^{32}}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(=\frac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}\)
\(=\frac{3^2.2^{36}}{\left(11-2\right).2^{35}}\)
\(=\frac{9.2^{36}}{9.2^{35}}\)
\(=2\)
Học tốt
a, =\(3^4+2^5=81+32=113\)
b, =\(3.\left(4^2-2.3\right)=3.\left(16-6\right)=3.10=30\)
c, =\(\dfrac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\dfrac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
d, =\(\dfrac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}=3\)
e, =\(\dfrac{3^6.5^3.2^8.5^4.2^2.3^4}{2^{10}.3^{10}.5^5}=\dfrac{3^{10}.2^{10}.5^7}{2^{10}.3^{10}.5^5}=5^2=25\)
g, =\(\dfrac{2^5.\left(2^8+1\right)}{2^2.\left(2^8+1\right)}=\dfrac{2^5}{2^2}=2^3=8\)
a) \(2^{2017}+2^{2014}=2^{2014}\left(2^3+1\right)=2^{2014}.9⋮9\)
b) \(4^{2016}+4^{2014}=4^{2014}\left(4^2+1\right)=4^{2014}.17\)
2) \(3.4^{n+2}+4^n=49\\ \Rightarrow4^n\left(3.4^2+1\right)=49\\ \Rightarrow4^n.33=49\\ \Rightarrow4^n=16\\ \Rightarrow n=2\)
3) \(200-180:\left[36.5-7.25\right]\\ =200-180:\left[180-175\right]\\ =200-180:5\\ =200-36\\ =164\)
Ta có:
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{216+108+27}{-13}=\frac{351}{-13}=-27\)27