Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(9\left(2x+6\right)\left(x-5\right)<0\)
\(\Leftrightarrow\) 2x + 6 < 0 hoặc x - 5 < 0
\(\Leftrightarrow\) x < - 3 hoặc x < 5
Tóm lại là x < - 3.
9(2x+6)(x-5)<0
TH1: 2x+6<0 và x-5>0
2x<-6 và x>5
x<-3 và x>5 (loại)
TH2: 2x+6>0 và x-5<0
2x>-6 và x<5
x>-3 và x<5
=> -3<x<5
1,
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và \(x^4.y^4=81\)
Đặt \(x^2=a\left(a\ge0\right);y^2=b\left(b\ge0\right)\)
Ta có \(\frac{a+b}{10}=\frac{a-2b}{7}\)và \(a^2b^2=81\)
:\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\)nên \(\left(9b^2\right).b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\left(b\ge0\right)\)
Suy ra a = 9 . 1 = 9
Ta có x2 = 9 và y2 = 1. Suy ra x = ±3, y = ±1.
\(x^4y^4=81\Rightarrow x^2y^2=9\Rightarrow x^2=\frac{9}{y^2}\)
\(\Rightarrow\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Leftrightarrow\frac{y^4+9}{10y^2}=\frac{9-2y^4}{7y^2}\Leftrightarrow7\left(y^4+9\right)=10\left(9-2y^4\right)\Leftrightarrow y^4=1\Leftrightarrow y=\pm1\)
\(\Rightarrow x^4=81\Leftrightarrow x=\pm3\)
x | y | 2012x+2013y |
1 | 3 | 8051 |
1 | -3 | -4027 |
-1 | 3 | 4027 |
-1 | -3 | -8051 |
12,7 - 17,2 + 199,9 - 22,8 - 149,9
= 12,7 - (17,2+22,8) + (199,9-149,9)
= 12,7 - 40 + 50
= 12,7 + 10 = 22,7
\(\sqrt{2}\) < 2
⇔ 6 + \(\sqrt{2}\) < 2 + 6 =8
6 + \(\sqrt{2}\) < 8
2< 4
√2 < 2= √4
6+√2 < 8