\(^2\)+6x-9

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2022

\(5x\left(x-3\right)-x^2+6x-9\\ =5x\left(x-3\right)-\left(x^2-6x+9\right)\\ =5x\left(x-3\right)-\left(x-3\right)^2\\ =\left(x-3\right)\left(5x-x+3\right)\\ =\left(x-3\right)\left(4x+3\right)\)

1) \(x^2+6x+8\)

\(=x^2+2x+4x+8\)

\(=x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+4\right)\left(x+2\right)\)

2) \(x^2-5x-14\)

\(=x^2-7x+2x-14\)

\(=x\left(x-7\right)+2\left(x-7\right)\)

\(=\left(x-7\right)\left(x+2\right)\)

3) \(2x^2+5x+3\)

\(=2x^2+2x+3x+3\)

\(=2x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+3\right)\)

4) \(x^2-x-12\)

\(=x^2-4x+3x-12\)

\(=x\left(x-4\right)+3\left(x-4\right)\)

\(=\left(x-4\right)\left(x+3\right)\)

11 tháng 10 2020

a/ Sai đề à??

\(\left(2x^3-3\right)^2-\left(4x^2-9\right)=0\)

\(\Leftrightarrow4x^6-12x^3+9-4x^2+9=0\)

\(\Leftrightarrow4x^6-13x^2-4x^2+18=0\)

b/ \(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x^2+3+2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\) (do \(x^2+3+2x>0\forall x\))

d/ \(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

17 tháng 7 2019

a) x=0

b) x=0

c) x=0

d)x=x

17 tháng 7 2019

a b c d 

x=x

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

10 tháng 10 2017

******************************************************

a) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4\)

\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)

b) \(x^3-3x+2=x^3+2x^2-2x^2-4x+x+2\)

\(=x^2\left(x+2\right)-2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+1\right)=\left(x+2\right)\left(x-1\right)^2\)

c) \(x^3-5x^2+3x+9=x^3+x^2-6x^2-6x+9x+9\)

\(=x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+9\right)=\left(x+1\right)\left(x-3\right)^2\)

d) \(x^3+8x^2+17x+10=x^3+2x^2+6x^2+12x+5x+10\)

\(=x^2\left(x+2\right)+6x\left(x+2\right)+5\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+6x+5\right)=\left(x+2\right)\left(x+5\right)\left(x+1\right)\)

e) \(x^3+3x^2+6x+4=x^3+x^2+2x^2+2x+4x+4\)

\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+2x+4\right)\)

f) \(x^3+3x^2+3x+2=x^3+2x^2+x^2+2x+x+2\)

\(=x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+x+1\right)\)

10 tháng 7 2018

a) 5x - 5y + ax - ay = 5(x - y) + a(x - y)

= (5 + a)(x - y)

b) x3 - x + 3x2y + 3xy2 + y3 - y

= (x3 + 3x2y + 3xy2 + y3) - (x + y)

= (x + y)3 - (x + y)

= (x + y)[(x + y)2 - 1]

= (x + y)(x + y + 1)(x + y - 1)

c) x2 - 2x - 3 = x2 + x - 3x -3

= x(x + 1) - 3(x + 1)

= (x - 3)(x + 1)

e) 6x - 9 - x2 = 3x - 9 + 3x - x2

= 3(x - 3) + x(3 - x)

= 3(x - 3) - x(x - 3)

= (3 - x)(x - 3)

20 tháng 10 2018

help me!!!

26 tháng 10 2022

b: \(=x^4+x^2+36-2x^3+12x^2-12x+x^2-6x+9\)

\(=x^4-2x^3+14x^2-18x+45\)

\(=x^4+9x^2-2x^3-18x+5x^2+45\)

\(=\left(x^2+9\right)\left(x^2-2x+5\right)\)

d: \(=2x^4+2x^3+6x^2-x^3-x^2-3x+x^2+x+3\)

\(=\left(x^2+x+3\right)\left(2x^2-x+1\right)\)

e: \(=3x^4-3x^3-3x^2-2x^3+2x^2+2x+2x^2-2x-2\)

\(=\left(x^2-x-1\right)\left(3x^2-2x+1\right)\)

17 tháng 7 2019

bài lạ thật

17 tháng 7 2019

ý bạn là như thế này đúng không ạ:

a/ \(x^2-6x+5=0\)

\(x^2-5x-x+5=0\)

\(x\left(x-5\right)-\left(x-5\right)=0\)

\(\left(x-5\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}x-5=0\rightarrow x=5\\x-1=0\rightarrow x=1\end{cases}}\)

b/\(2x^2+7x+9=0\)

?!

c/ \(4x^2-7x+3=0\)

\(4x^2-4x-3x+3=0\)

\(4x\left(x-1\right)-3\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x-3\right)=0\)

\(\orbr{\begin{cases}x-1=0\Rightarrow x=1\\4x-3=0\Rightarrow x=\frac{3}{4}\end{cases}}\)

d/ \(2\left(x+5\right)=2x+10\)

-,- mik ko rõ đề ạ, sai thì ibox ạ.Cảm ơn

17 tháng 7 2019

\(x^2-6x+5=0\)

<=> \(x^2-x-5x+5=0\)

<=> \(x\left(x-1\right)-5\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x-5\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x=1 và x=5

\(2x^2+7x-9=0\) ( nếu là 9 thì ko ra kq đc nên mình đổi thành -9 nha )

<=> \(2x^2-2x+9x-9=0\)

<=> \(2x\left(x-1\right)+9\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(2x+9\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\2x+9=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{-9}{2}\end{matrix}\right.\)

\(4x^2-7x+3=0\)

<=> \(4x^2-4x-3x+3=0\)

<=>\(4x\left(x-1\right)-3\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(4x-3\right)=0\)

<=> \(\left\{{}\begin{matrix}x-1=0\\4x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=\frac{3}{4}\end{matrix}\right.\)

\(2\left(x+5\right)=x^2+5x\)

<=> \(2\left(x+5\right)-x^2-5x=0\)

<=>\(2\left(x+5\right)-x\left(x+5\right)=0\)

<=>\(\left(x+5\right)\left(2-x\right)=0\)

<=>\(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)