Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: 5x^2+5y^2+8xy-2x+2y+2=0
=>4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0
=>(x-1)^2+(y+1)^2+(2x+2y)^2=0
=>x=1 và y=-1
M=(1-1)^2015+(1-2)^2016+(-1+1)^2017=1
\(x^3-x^2+x^2-x+6x-6=0\Leftrightarrow\left(x-1\right)\left(x^2-x+6\right)=0\Leftrightarrow\left(x-1\right)=0\Leftrightarrow x=2;x^2-x+6>0\)
\(4x^2-12x+9=9-5\Leftrightarrow\left(2x-3\right)^2-4=0\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{1}{2};x=\frac{5}{2}\)
khó ( x =2040)
a) \(x^3-6x^2-9x+14=0\)
\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)
\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)
\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)
\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)
Lời giải:
a)
$x^3-6x^2-9x+14=0$
$\Leftrightarrow x^3-x^2-5x^2+5x-14x+14=0$
$\Leftrightarrow x^2(x-1)-5x(x-1)-14(x-1)=0$
$\Leftrightarrow (x-1)(x^2-5x-14)=0$
$\Leftrightarrow (x-1)(x^2-7x+2x-14)=0$
$\Leftrightarrow (x-1)[x(x-7)+2(x-7)]=0$
$\Leftrightarrow (x-1)(x+2)(x-7)=0$
$\Rightarrow x=1; x=-2$ hoặc $x=7$
b)
Bạn tham khảo tại đây:
Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Nhân cả hai vế của đẳng thức trên với \(a^2+b^2+c^2\ne0\) (do \(a,b,c\ne0\)), ta được:
\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\) \(\left(1\right)\)
Khi đó, ta khai triển vế phải của \(\left(1\right)\) thì \(\left(1\right)\) trở thành:
\(VP=x^2+\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+y^2+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}+z^2\)
So sánh vế trái của đẳng thức \(\left(1\right)\), ta dễ dàng nhận thấy cả hai vế có cùng đa thức \(x^2+y^2+z^2\) nên ta có thể viết lại \(\left(1\right)\) như sau:
\(\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}=0\)
\(\Leftrightarrow\) \(\left(\frac{b^2x^2}{a^2}+\frac{c^2x^2}{a^2}\right)+\left(\frac{c^2y^2}{b^2}+\frac{a^2y^2}{b^2}\right)+\left(\frac{a^2z^2}{c^2}+\frac{b^2z^2}{c^2}\right)=0\)
\(\Leftrightarrow\) \(\frac{x^2}{a^2}\left(b^2+c^2\right)+\frac{y^2}{b^2}\left(c^2+a^2\right)+\frac{z^2}{c^2}\left(a^2+b^2\right)=0\) \(\left(2\right)\)
Mặt khác, ta cũng có \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\) \(a^2+b^2\ne0;\) \(b^2+c^2\ne0\) và \(c^2+a^2\ne0\) \(\left(3\right)\)
Từ \(\left(2\right)\) và \(\left(3\right)\), ta dễ dàng suy ra được \(x=y=z=0\)
Vậy, \(x^{2011}+y^{2011}+z^{2011}=0\)
5x(x-2011)-x+2011=0
5x(x-2011)-(x-2011)=0
(5x-1)(x-2011)=0
TH1 : 5x-1= 0
5x=1
x=1/5
TH2 : x-2011=0
x=2011