Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
1. Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)
+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)
+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)
+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)
Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)
2,Áp dụng tc dãy TSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)
+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)
+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)
+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)
Vậy \(x=-2;y=-3;c=-4\)
a)\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\)
Áp dụng t/c của dãy tỉ số bằng nhau,ta có;
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2}{9}=\dfrac{x-3y+42}{4-3.3+9.21}=\dfrac{62}{184}=\dfrac{31}{92}\)
=>x=...;y=....
(-5x2y + 3xy2 + 7) + (-6x2y + 4xy2 - 5)
= -5x2y + 3xy2 + 7 - 6x2y + 4xy2 - 5
= -11x2y + 7xy2 + 2
(2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)
= 2,4x3 - 10x2y + 7x2y - 2,4x3 + 3xy2
= -3x2y + 3xy2
Mình sửa lại câu cuối:
(15x2y - 7xy2 - 6y2) + (2x2 - 12x2y + 7xy2)
= 15x2y - 7xy2 - 6y2 + 2x2 - 12x2y + 7xy2
= 3x2y - 6y2 + 2x2
Chúc bn học tốt!
Lời giải:
Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)
Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)
Vậy $a=0$
---------------------
$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$
$=-3xy^4+(a+7)x^3y^7-7xy$
Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)
Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)
Vậy $a+7=0\Leftrightarrow a=-7$
b: 2x^3-1=15
=>2x^3=16
=>x=2
\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)
=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)
=>y-25=32; z+9=50
=>y=57; z=41
d: 3/5x=2/3y
=>9x=10y
=>x/10=y/9=k
=>x=10k; y=9k
x^2-y^2=38
=>100k^2-81k^2=38
=>19k^2=38
=>k^2=2
TH1: k=căn 2
=>\(x=10\sqrt{2};y=9\sqrt{2}\)
TH2: k=-căn 2
=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)
a) Có:
\(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Rightarrow M=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=\left(6x^2-5x^2\right)+\left(9xy+2xy\right)-y^2\)
\(\Rightarrow M=x^2+11xy-y^2\)
b) Có:
\(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Rightarrow N=3xy-4y^2-\left(x^2-7xy+8y^2\right)\)
\(N=3xy-4y^2-x^2+7xy-8y^2\)
\(N=\left(3xy+7xy\right)+\left(-4y^2-8y^2\right)-x^2\)
\(\Rightarrow N=10xy+\left(-12y^2\right)-x^2\)
Hay \(N=10xy-12y^2-x^2\)
Chúc bạn học tốt!
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy