\(5x=8y=20z\)và x-y-z=3

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

mk sửa lại đề bài c)\(\frac{x}{3}\)=\(\frac{y}{4}\)và xy = 48

26 tháng 10 2019

a) Ta có \(\frac{x-2}{x+3}=\frac{x-3}{x+1}\)

\(\Rightarrow\left(x-2\right)\left(x+1\right)=\left(x-3\right)\left(x+3\right)\)

\(\Rightarrow x^2+x-2x-2=x^2-3^2\)

\(\Rightarrow x^2-x-2=x^2-3^2\)

\(\Rightarrow-x=2-3^2\)

\(\Rightarrow-x=-7\)

\(\Rightarrow x=7\)

b) Từ 5x = 8y = 20z 

=> \(\hept{\begin{cases}5x=8y\\8y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{32}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\frac{x}{32}=\frac{y}{20}=\frac{z}{8}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{32}=\frac{y}{20}=\frac{z}{8}=\frac{x-y-z}{32-20-8}=\frac{3}{4}\)

\(\Rightarrow x=\frac{32.3}{4}=24;\)

\(y=\frac{20.3}{4}=15;\)

\(z=\frac{8.3}{4}=6\)

Vậy x = 24 ; y = 15 ; z = 6

c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow x=3k;y=4k\)

Khi đó xy = 48

<=> 3k.4k = 48

=> 12.k2 = 48

=> k2 = 4

=> k2 = 22

=> \(k=\pm2\)

Nếu k = - 2

=> \(\hept{\begin{cases}x=-6\\y=-8\end{cases}}\)

Nếu k = 2

=> \(\hept{\begin{cases}x=6\\y=8\end{cases}}\)

Vậy các cặp số (x ; y) thỏa mãn là (- 6 ; - 8) ; (6 ; 8)

20 tháng 6 2016

v~ tuần này ko giải nữa

20 tháng 6 2016

biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau

mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di

28 tháng 10 2017

5x = 8y = 20z suy ra 5x/40 = 8y/40 = 20z/40 suy ra x/8 = y/5 = z/2 . ap dung tinh chat day ty so bang nhau ta co x/8 =y/5 =z/2 =          x-y-z/8-5-2 =3 /1 =3 . tu x/8 =3 suy ra x =24 . tu y /6=3 suy ra y=18 . tu z/2 =3 suy ra z =6 . vay x = 24 , y = 18 , z = 6

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

23 tháng 7 2016

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

Áp dụng tính chất của dãy tủ số bằng nhau ta có:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\frac{x}{4}=2=>x=8\)

\(\frac{3y}{9}=2=>y=6\)

\(\frac{4z}{36}=2=>z=18\)

23 tháng 7 2016

Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)

\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)

10 tháng 8 2019

a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)

8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

=> x = 24,y = 15,z = 6

b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)

=> x = -165 , y = -20 , z = -25

c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k

=> xyz = 12k . 9k . 5k

=> xyz = 540k3

=> 540k3 =20

=> k3 = 20/540

=> k3 = 1/27

=> k = 1/3

Do đó : x= 4 , y = 3 , z = 5/3

14 tháng 9 2019

a) Ta có \(5x=3y.\)

=> \(\frac{x}{y}=\frac{3}{5}\)

=> \(\frac{x}{3}=\frac{y}{5}.\)

=> \(\frac{x^2}{9}=\frac{y^2}{25}\)\(x^2-y^2=-4.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x^2}{9}=\frac{y^2}{25}=\frac{x^2-y^2}{9-25}=\frac{-4}{-16}=\frac{1}{4}.\)

\(\left\{{}\begin{matrix}\frac{x^2}{9}=\frac{1}{4}\Rightarrow x^2=\frac{9}{4}\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{3}{2}\end{matrix}\right.\\\frac{y^2}{25}=\frac{1}{4}\Rightarrow y^2=\frac{25}{4}\Rightarrow\left[{}\begin{matrix}y=\frac{5}{2}\\y=-\frac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\frac{3}{2};\frac{5}{2}\right),\left(-\frac{3}{2};-\frac{5}{2}\right).\)

Chúc bạn học tốt!

14 tháng 9 2019

giúp mk với, tối nạp cô rồi

7 tháng 11 2018

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

7 tháng 11 2018

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)