\(-5.x+4.y=-84\) Tìm x,y thuộc Z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Ko chắc đâu nha !

\(-5x+4y=-84\)

\(\Leftrightarrow5x-4y=84\) ( đoạn này hack não quá à )

Nhận thấy \(4y⋮4;84⋮4\Rightarrow5x⋮4\) mà \(\left(4;5\right)=1\) nên \(x⋮4\)

Đặt \(x=4k\left(k\in Z\right)\) ta có:

\(20k-4y=84\)

\(\Leftrightarrow5k-y=21\)

\(\Leftrightarrow y=5k-21\)

Vậy \(x=4k;y=4k-21\) với \(k\in Z\)

\(-5x+4y=-84\)

\(\Rightarrow-5x=-84-4y\)

\(\Rightarrow-5x=-4\left(21+y\right)\)

\(\Rightarrow\frac{-5}{-4}=\frac{21+y}{x}\Rightarrow\orbr{\begin{cases}21+y=\pm5\\x=\pm4\end{cases}}\)

Vậy:...

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}21+y=5\\x=4\end{cases}}\\\hept{\begin{cases}21+y=-5\\x=-4\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-16\\x=4\end{cases}}\\\hept{\begin{cases}y=-26\\x=-4\end{cases}}\end{cases}}\)

17 tháng 8 2020

a. Vì \(\left|x+\frac{1}{2}\right|\ge0\forall x;\left|y-\frac{3}{4}\right|\ge0\forall y;\left|z-1\right|\ge0\forall z\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x + 1/2 | = 0 ; | y - 3/4 | = 0 ; | z - 1 | = 0

<=> x = - 1/2 ; y = 3/4 ; z = 1

b. Vì \(\left|x-\frac{3}{4}\right|\ge0\forall x;\left|\frac{2}{5}-y\right|\ge0\forall y\left|x-y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x - 3/4 | = 0 ; | 2/5 - y | = 0 ; | x - y + z | = 0

<=> x = 3/4 ; y = 2/5 ; z = - 7/20

17 tháng 8 2020

a) Ta có \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)

Vậy x = -1/2 = y = 3/4 ; z = 1 

b) Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20

11 tháng 12 2022

Bài 3:

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2y+z}{3\cdot3-2\cdot5+7}=\dfrac{84}{6}=14\)

=>x=42; y=70; z=98

Ta có: \(x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}\)

          \(x+y+z=\frac{13}{12}:2=\frac{13}{24}\)

          \(x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\)

         \(y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\)

         \(z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\)

 Vậy x = ....; y = .....; z = .......

k cho mik nha
 

23 tháng 7 2017

a. \(\frac{x-5}{2000}+\frac{x-4}{1999}+\frac{x-3}{1998}=\frac{x-2}{1997}+\frac{x-1}{1996}+\frac{x}{1995}\)

\(\Leftrightarrow\left(\frac{x-5}{2000}+1\right)+\left(\frac{x-4}{1999}+1\right)+\left(\frac{x-3}{1998}+1\right)=\left(\frac{x-2}{1997}+1\right)+\left(\frac{x-1}{1996}+1\right)+\left(\frac{x}{1995}+1\right)\)

\(\Leftrightarrow\left(x+1995\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}-\frac{1}{1995}\right)=0\)

\(\Leftrightarrow x+1995=0\)

\(\Leftrightarrow x=-1995\)

23 tháng 7 2017

CÂU B BẠN LÀM TƯƠNG TỰ NHÉ

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{6}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{2x}{8}=\dfrac{3y}{18}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{8}=\dfrac{3y}{18}=\dfrac{z}{5}=\dfrac{2x+3y-z}{8+18-5}=\dfrac{84}{21}=4\)

\(\Rightarrow\left[{}\begin{matrix}x=16\\y=24\\z=20\end{matrix}\right.\)