Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(14x^2y-21xy^2+28x^2y^2\)
\(=7xy(2x-3y+4xy)\)
b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)
c)
\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)
\(=(x-y)(10x+8)=2(x-y)(5x+4)\)
a. \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\left(2x-3y+4xy\right)\)
b. \(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
c. \(10x\left(x-y\right)-8\left(y-x\right)\)
\(=10x\left(x-y\right)+8\left(x-y\right)\)
\(=\left(10x+8\right)\left(x-y\right)\)
d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)
\(=2x\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)
g. \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y^2\right)-4z^2\right]\)
\(=5\left(x-y+z\right)\left(x-y-z\right)\)
h. \(x^3-x+3x^2y+3xy^3+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
i. \(x^2+7x-8\)
\(=x^2-x+8x-8\)
\(=x\left(x-1\right)+8\left(x-1\right)\)
\(=\left(x+8\right)\left(x-1\right)\)
Bài 2:
a: \(A=\left(2x-y\right)^2=\left(12-2\right)^2=100\)
b: \(=\left(x-3\right)^3=100^3=1000000\)
c: \(=\left(x-y\right)^2-9z^2\)
\(=\left(x-y-3z\right)\left(x-y+3z\right)\)
\(=\left(6+4-90\right)\left(6+4+90\right)=-80\cdot100=-8000\)
a) ( -5x2 +3xy + 7) + ( -6x2y + 4xy2 - 5)=4*x*y^2-6*x^2*y+3*a*x*y-5*a*x^2+7*a-5
b) ( 2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)=3*x*y^2-3*x^2*y
c) ( 15x2y - 7xy2 - 6y2) + (2x2 - 12x2y + 7xy2)=-6*y^2+3*x^2*y+2*x^2
d) ( 4x2 + x2y - 5y3) + (5/3 x3 - 6xy2 - x2y) + (x3/3 + 10y3) + ( 6y3-15xy2 - 4x2y - 10x3)=11*y^3-21*x*y^2-4*x^2*y-8*x^3+4*x^2
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
\(a,4y\left(x-1\right)-\left(1-x\right)\)
\(=4y\left(x-1\right)+\left(x-1\right)\)
\(=\left(4y+1\right)\left(x-1\right)\)
\(b,18x^2\left(3+x\right)+3\left(x+3\right)\)
\(=\left(18x^2+3\right)\left(3+x\right)\)
a) \(x^2-3xy+x-3y=x\left(x-3y\right)+\left(x-3y\right)=\left(x-3y\right)\left(x+1\right)\)
b) \(x^2-6x-y^2+9=x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
c) \(7x^3y-14x^2y+7xy=7xy\left(x^2-2x+1\right)=7xy\left(x-1\right)^2\)
\(x^2-3xy+x-3y=\left(x^2+x\right)-\left(3xy+3y\right)=x\left(x+1\right)-3y\left(x+1\right)=\left(x+1\right)\left(x-3y\right)\)
\(x^2-6x-y^2+9=\left(x^2-2.x.3+3^2\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(7x^3y-14x^2y+7xy=\left(7x^3y-7x^2y\right)-\left(7x^2y-7xy\right)=7x^2y.\left(x-1\right)-7xy.\left(x-1\right)\)
\(=\left(x-1\right).\left(7x^2y-7xy\right)=7xy.\left(x-1\right).\left(x-1\right)=7xy.\left(x-1\right)^2\)
\(B=7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
\(E=x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(F=x^2-9x+18\)
\(=x^2-3x-6x+18\)
\(=x\left(x-3\right)-6\left(x-3\right)\)
\(=\left(x-3\right)\left(x-6\right)\)
\(H=8x^2-2x-1\)
\(=8x^2-4x+2x-1\)
\(=4x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(4x+1\right)\)
5x3(7x+1)-10x2(7x+1)
= (7x+1)(5x3-10x2)
28x3y3-14x2y+7xy2
= 7xy(4x2y2-2x+y)
a(x-y)+y(y-x)
= a(x-y)-y(x-y)
= (x-y)(a-y)
ac+bc+a+b
= ac+a+bc+b
= a(c+1)+b(c+1)
= (c+1)(a+b)