Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x,y,z 5x=2y , 2x=3z và x.y=90
\(\frac{x}{2}=\frac{y}{5}=\frac{x}{3}=\frac{z}{2}\)và \(x.y=90\)
\(\Leftrightarrow\frac{x}{2}=\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{2}=\frac{x.y}{6.5}=\frac{90}{30}=3\)
\(\Rightarrow\frac{x}{6}=3\Rightarrow3.6=18\)
\(\frac{y}{5}=3\Rightarrow y=3.5=15\)
\(\frac{z}{2}=3\Rightarrow z=3.2=6\)
Vây x = 18 y = 15 z = 6
k nha ^-^
Có :
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
\(\Rightarrow x,y,z\)cùng dấu
Lại có : \(\Rightarrow\frac{x^2}{36}=\frac{y^2}{225}=\frac{z^2}{16}=\left(\frac{x}{6}\right)\left(\frac{y}{15}\right)=\frac{xy}{6.15}=\frac{90}{90}=1\)
\(\frac{x^2}{36}=1\Rightarrow x^2=36\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(\frac{y^2}{225}=1\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{16}=1\Rightarrow z^2=16\Rightarrow\orbr{\begin{cases}z=4\\z=-4\end{cases}}\)
Mà \(x,y,z\)cùng dấu
\(\Rightarrow\orbr{\begin{cases}x=6;y=15;z=4\\x=-6;y=-15;z=-4\end{cases}}\)
Vậy ...
Giải:
Ta có: 5x = 2y => x/2 = y/5 => x/6 = y/15
2x = 3z => x/3 = z/2 => x/6 = z/4
=> x/6 = y/15 = z/4
Đặt x/6 = y/15 = z/4 = k
=> x = 6k, y = 15k, z = 4k
Mà xy = 90
=> 6.k.15.k = 90
=> 90.k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
+) k = 1 => x = 6, y = 15, z = 4
+) k = -1 => x = -6, y = -15, z = -4
Vậy x = 6, y = 15, z = 4 hoặc x = -6, y = -15, z = -4
Từ 5x=2y =>\(\frac{x}{2}\)=\(\frac{y}{5}\)=>\(\frac{x}{6}\)=\(\frac{y}{15}\)1
Từ 2x=3z =>\(\frac{x}{3}\)=\(\frac{z}{2}\)=>\(\frac{x}{6}\)=\(\frac{z}{4}\)2
Từ 1 và 2, suy ra : \(\frac{x}{6}\)=\(\frac{y}{15}\)=\(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)=\(\frac{y}{15}\)=k => x=6k ; y=15k
Thay x=6k ; y=15k vào xy=90,ta có:
xy=90 <=> 6k.15k=90 <=> k^2.15.6=90 <=> k^2.90=90 <=> k^2=1 hoặc -1
Với k=1 ,ta có:
x=6 ; y=15 ; z=4
Với k=-1 ,ta có:
x=-6 ; y=-15 ; z=-4
Mk ko bt có đúng ko nữa. Nếu ko đúng thì sorry nha!!!
Từ \(5x=2y\)\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)
Từ \(2x=3z\)\(\Rightarrow\frac{x}{z}=\frac{3}{2}\)
Từ \(xy=90\)\(\Rightarrow x=\frac{90}{y};y=\frac{90}{x}\)
Ta có: \(\frac{x}{y}=\frac{2}{5}\)
Mà \(x=\frac{90}{y}\)
Nên \(\frac{\frac{90}{y}}{y}=\frac{2}{5}\)\(\Leftrightarrow\frac{90}{y^2}=\frac{2}{5}\)\(\Leftrightarrow y=\pm15\)
*Khi \(y=15\) thì \(x=\frac{90}{15}=6\) và \(z=\frac{6.2}{3}=4\)
*Khi \(y=-15\) thì \(x=\frac{90}{-15}=-6\) và \(z=\frac{-6.2}{3}=-4\)
Vậy \(\left\{x;y;z\right\}\in\left\{\left(6;15;4\right),\left(-6;-15;-4\right)\right\}\)
b) 5x=2y ; 2x=3z <=> x/10=y/4=z/15
Đặt k ta có : \(\frac{x}{10}=\frac{y}{4}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}\frac{x}{10}=k\Rightarrow x=10k\\\frac{y}{4}=k\Rightarrow y=4k\\\frac{z}{15}=k\Rightarrow z=15k\end{cases}}\)
x.y=10k.4k=40.k2=90
=> k2=2,25
=> k=1,5
x=10k=10.1,5=15
y=4k=4.1,5=6
z=15k=15.1,5=22,5
Vậy ...
b)Ta có:5x=2y => \(\frac{x}{2}\)= \(\frac{y}{5}\)<=> \(\frac{x}{6}\)= \(\frac{y}{15}\)(1)
2x=3z => \(\frac{x}{3}\)= \(\frac{z}{2}\)<=> \(\frac{x}{6}\)= \(\frac{z}{4}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)= \(\frac{y}{15}\)= \(\frac{z}{4}\)= k
Suy ra:x=6k,y=15k,z=4k
Ta có: xy=6k.15k=90k2=90
=> k2=1
=> k=1 hoặc k=-1
Nếu k=1 thì x=6,y=15,z=4
Nếu k=-1 thì x=-6,y=-15,z=-4
Vậy.....
Chúc các bạn hk tốt!
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{xy}{10}=9\Rightarrow x=-6;6\)
Ta có 2x=3z nên x1=6; y1=15 ; z1=4 Hoặc x1=-6 ;y1=-15 ; z1=-4