Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha
a) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)
b) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2\)
\(=x^4-\dfrac{4}{25}y^2\)
c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+3y.x+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
d) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
\(\left(x+4\right)\left(x^2-4x+16\right)\)
\(=x^3-4x^2+16x+4x^2-16x+64\)
\(=x^3+64\)
\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)
\(=\)\(x^2-27y^3\)
\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)
\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)
làm nốt nha
a) 5x-15y=5x-3.5.y=5(x-3y)
c) 14xy(xy+28x)
d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)
e) (x-1)3
f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)
g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))
h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
2a)
(x+1)(x2+2x)=0
(x+1)x(x+2)=0
\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)
Phân tích đa thcusw thành nhân tử (Phương pháp nhân hạng tử):
1. 3a - 3b + ax - bx
= 3(a - b) + x(a - b)
= (a - b)(3 + x)
2. x3 + 3x2 + 3x + 9
= x3 + 3x2 + 3x + 1 + 8
= (x + 1)3 + 8
= (x + 1 + 2)[(x + 1)2 - 2(x + 1) + 4]
= (x + 3)(x2 + 2x + 1 - 2x - 2 + 4)
= (x + 3)(x2 + 3)
3. 10ay - 5by + 2ax - bx
= 5y(2a - b) + x(2a - b)
= (2a - b)(5y + x)
4. 5a2 - 5ax - 7a + 7x
= 5a(a - x) - 7(a - x)
= (a - x)(5a - 7)
5. x2 - 3xy + x - 3x
= x(x - 3y + 1 - 3)
= x(x - 3y - 2)
6. 7x2 - 7xy - 4x + 4y
= 7x(x - y) - 4(x - y)
= (x - y)(7x - 4)
7. 3ax - 4by - 4ay + 3bx
= (3ax + 3bx) - (4ay + 4by)
= 3x(a + b) - 4y(a + b)
= (a + b)(3x - 4y)
8. 30ax - 34bx - 15a + 17b
= (30ax - 15a) - (34bx -17b )
= 15a(x - 1) - 17b(x - 1)
= (x - 1)(15a - 17b)
9. 3x2 - 3xy + 3y2 - 3xy
= 3(x2 - xy + y2 - xy)
= 3(x2 - 2xy + y2)
= 3(x - y)2
10. 12a2 - 6ab + 3b2 - 6ab
= 3(4a2 - 2ab + b2 - 2ab)
= 3(4a2 - 4ab + b2)
= 3(2a - b)2
a: \(=3x^3-2x^2+5x\)
b: \(=x^3-2x^2+3x+6x^2-12x+18\)
\(=x^3+4x^2-9x+18\)
c: \(=2x^2-6xy+6xy-15y^2=2x^2-15y^2\)
d: \(=\left(x+3\right)\left(x^2-9\right)-x^3+27\)
\(=x^3-9x+3x^2-27-x^3+27=3x^2-9x\)
a) \(\left(x+\frac{1}{4}\right)^2\)
\(=x^2+\frac{1}{2}x+\frac{1}{8}\)
b) HĐT 5
c) HĐT 5
d) HĐT 7
e) HĐT 7
f) HĐT 7
\(a,x^3-3x^2+3x-9=0\\ \Leftrightarrow x^2\left(x-3\right)+3\left(x-3\right)=0\\\Leftrightarrow \left(x-3\right)\left(x^2+3\right)=0\\ \Leftrightarrow x-3=0\left(dox^2+3\ge3>0\right)\\ \Leftrightarrow x=3\)
Vậy...
\(b,x^2+3y^2+2xy+4y+2x+3=0\\ \Leftrightarrow\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(2y^2+2y+2\right)=0\\ \Leftrightarrow\left(x+y+1\right)^2+2\left[\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
Với mọi x;y thì \(\left(x+y+1\right)^2\ge0\\ 2\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge\dfrac{3}{2}\)
\(\Rightarrow\left(x+y+1\right)^2+2\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Do đó ko tìm đc gtri nào củax;y thoa mãn