\(=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2022

\(5x^2-3x-8=0\\ =5x^2+5x-8x-8\\ =5x\left(x+1\right)-8\left(x-1\right)\\ =\left(5x-8\right)\left(x+1\right)\)

NV
10 tháng 1 2022

\(\Leftrightarrow5x^2+5x-8x-8=0\)

\(\Leftrightarrow5x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(5x-8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-8=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}\\x=-1\end{matrix}\right.\)

29 tháng 3 2020

1) Ta có : \(4x+20=0\)

=> \(x=-\frac{20}{4}=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

2) Ta có : \(3x+15=30\)

=> \(3x=15\)

=> \(x=5\)

Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)

3) Ta có : \(8x-7=2x+11\)

=> \(8x-2x=11+7=18\)

=> \(6x=18\)

=> \(x=3\)

Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)

4) Ta có : \(2x+4\left(36-x\right)=100\)

=> \(2x+144-4x=100\)

=> \(-2x=-44\)

=> \(x=22\)

Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)

5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)

=> \(2x-3+5=4x+12\)

=> \(-2x=10\)

=> \(x=-5\)

Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)

29 tháng 3 2020

1) 4x+20=0

\(\Leftrightarrow\) 4x=-20

\(\Leftrightarrow\) x=-5

Vậy pt trên có tập nghiệm là S={-5}

2) 3x+15=30

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

3) 8x-7=2x+11

\(\Leftrightarrow\) 8x-2x=11+7

\(\Leftrightarrow\) 6x=18

\(\Leftrightarrow\) x=3

Vậy pt trên có tập nghiệm là S={3}

4) 2x+4(36-x)=100

\(\Leftrightarrow\) 2x+144-4x=100

\(\Leftrightarrow\) -2x+144=100

\(\Leftrightarrow\) -2x=-44

\(\Leftrightarrow\) x=22

Vậy pt trên có tập nghiệm là S={22}

5) 2x-(3-5x)=4(x+3)

\(\Leftrightarrow\) 2x-3+5x=4x+12

\(\Leftrightarrow\) 2x+5x-4x=12+3

\(\Leftrightarrow\) 3x=15

\(\Leftrightarrow\) x=5

Vậy pt trên có tập nghiệm là S={5}

6) 3x(x+2)=3(x-2)2

\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)

\(\Leftrightarrow\) 3x2+6x=3x2-12x+12

\(\Leftrightarrow\) 3x2-3x2+6x+12x=12

\(\Leftrightarrow\) 18x=12

\(\Leftrightarrow\) x=\(\frac{2}{3}\)

23 tháng 2 2020
https://i.imgur.com/fUiVn85.jpg
23 tháng 2 2020

a) \(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{1}{2}\right\}.\)

b) \(\left(\frac{3x}{5}-\frac{1}{3}\right)^2=\left(\frac{x}{5}+\frac{2}{3}\right)^2\)

\(\Leftrightarrow\left(\frac{3x}{5}-\frac{1}{3}\right)^2-\left(\frac{x}{5}+\frac{2}{3}\right)^2=0\)

\(\Leftrightarrow\left(\frac{3x}{5}-\frac{1}{3}-\frac{x}{5}-\frac{2}{3}\right).\left(\frac{3x}{5}-\frac{1}{3}+\frac{x}{5}+\frac{2}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2x}{5}-1\right).\left(\frac{4x}{5}+\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{5}-1=0\\\frac{4x}{5}+\frac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{5}=1\\\frac{4x}{5}=-\frac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1.5\\4x=\left(-\frac{1}{3}\right).5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\4x=-\frac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{5}{12}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{\frac{5}{2};-\frac{5}{12}\right\}.\)

Chúc bạn học tốt!

16 tháng 7 2020

a, \(-3x^2+5x>0\)

\(\Leftrightarrow x\left(-3x+5\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\-3x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-3x+5< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< \frac{5}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>\frac{5}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow0< x< \frac{5}{3}\)

(vì không có giá trị nào của x thỏa mãn \(x< 0,x>\frac{5}{3}\))

Vậy bất phương trình có nghiệm: \(0< x< \frac{5}{3}\)

b, \(x^2-x-6< 0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow-2< x< 3\)

(vì không có giá trị nào của x thỏa mãn \(x< -2,x>3\))

Vậy bất phương trình có nghiệm: \(-2< x< 3\)

2 câu còn lại tương tự nhé.

10 tháng 2 2018

a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)

\(3x^2+10x-8=5x^2-2x+10\)

\(3x^2-5x^2+10x+2x-8-10=0\)

\(-2x^2+12x-18=0\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(\frac{x^2-x-6}{x-3}=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

10 tháng 2 2018

Gin hotaru  

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

4 tháng 3 2020

\(3x^2+7x-20=0\)

Ta có \(\Delta=7^2+4.3.20=289,\sqrt{\Delta}=17\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+17}{6}=\frac{5}{3}\\x=\frac{-7-17}{6}=-4\end{cases}}\)

4 tháng 3 2020

a) \(2x-\frac{3x-1}{3}=2+\frac{x-3}{4}\)

<=> 24x - 4(3x - 1) = 24 + 3(x - 3)

<=> 24x - 12x - 4 = 24 + 3x - 9

<=> 12x + 4 = 24 + 3x - 9

<=> 12x + 4 = 3x + 15

<=> 12x = 3x + 15 - 4

<=> 12x = 3x + 11

<=> 12x - 3x = 11

<=> 9x = 11

<=> x = 11/9

Vậy: tập nghiệm phương trình: S = {11/9}

b) \(\frac{x-5}{2}+\frac{1}{4}=\frac{x-2}{3}-x\)

<=> 3(x - 5) + 3/2 = 2(x - 2) - 6x

<=> 3x - 15 + 3/2 = 2x - 4 - 6x

<=> 3x - 27/2 = -4x - 4

<=> 3x = -4x - 4 + 27/2

<=> 3x = -4x + 19/2

<=> 3x + 4x = 19/2

<=> 7x = 19/2

<=> x = 19/14

Vậy: tập nghiệm phương trình: S = {19/14}

c) \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x+2}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{8}-5\)

<=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{2x+1}{4}-5\)

<=> 2(5x - 3) - 3(7x - 1) = 3(2x + 1) - 60

<=> 10x - 6 - 21x + 3 = 6x + 3 - 60

<=> -11x - 3 = 6x - 57

<=> -3 = 6x - 57 + 11x

<=> -3 = 17x - 57

<=> -3 + 57 = 17x

<=> 54 = 17x

<=> x = 54/17

Vậy: tập nghiệm phương trình: S = {59/17}

d) 3x+ 7x - 20 = 0

<=> 3x2 + 12x - 5x - 20 = 0

<=> 3x(x + 4) - 5(x + 4) = 0

<=> (x + 4)(3x - 5) = 0

<=> x + 4 = 0 hoặc 3x - 5 = 0

<=> x = -4 hoặc x = 5/3

Vậy: tập nghiệm phương trình: S = {-4; 5/3}

e) x- 3x + 2 = 0

<=> (x2 + x - 2)(x - 1) = 0

<=> (x - 1)(x + 2)(x - 1) = 0

<=> x - 1 = 0 hoặc x + 2 = 0

<=> x = 1 hoặc x = -2

Vậy: tập nghiệm phương trình: S = {1; -2}

12 tháng 5 2016

1) \(\frac{6x-2}{8}-\frac{3x-6}{8}-\frac{8}{8}>\frac{20-12x}{8}\)

\(<=>6x-2-3x+6-8>20-12x\)

\(<=>15x>24\)

\(<=>x>\frac{24}{15}\)

2) a)|-2,5x|=x-12

TH1: x>=0 => |-2,5x|=2,5x

2,5x=x-12 <=> x=-8 (loại)

TH2: x<0 => |-2,5x|=-2,5x

-2,5x=x-12 <=> x= 3,42857... (loại)

Vậy không có giá trị x thoả mãn

b) |5x|-3x-2=0

TH1: 5x>=0 => x>=0 => |5x|=5x

5x-3x-2 = 0 <=> x=1 (chọn)

TH2: 5x<0 => x<0 => |5x|=-5x

-5x-3x-2=0 <=> x=-0,25 (chọn)

Vậy x=1 hoặc x=-0,25

c) |-2x|+x-5x-3=0

TH1: -2x>=0 <=> x<=0 <=> |-2x|=-2x

-2x+x-5x-3=0 <=> x=-3 (chọn)

TH2: -2x<0 <=> x>0 <=> |-2x|=2x

2x+x-5x-3=0 <=> x=-1,5 (loại)

Vậy x=-3

3) a) Ta có: -x2+4x-4=-(x-2)2<=0

=> -x2+4x-4-5<=-5

=> -x2+4x-9<=-5

b) Ta có: x2-2x+1=(x-1)2>=0

=> x2-2x+1+8>=8

=> x2-2x+9>=8

12 tháng 5 2016

Bài 2 : 

|-2/5x| = x - 12

2/5x = x - 12 

2/5x - x = -12

=> -3/5x = -12

=> x =-12 : -3/5

=>x= 20

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

23 tháng 7 2017

a, \(A=9x^2-6x+5\)

\(=\left(9x^2-6x+1\right)+4\)

\(=\left(3x-1\right)^2+4\)

ta có:

\(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\forall x\)

Vậy Min A = 4

Để A = 4 thì \(3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(b,B=4x^2-5x\)

\(=\left(4x^2-5x+\dfrac{25}{16}\right)-\dfrac{25}{16}\)

\(=\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\)

TA có:

\(\left(2x-\dfrac{5}{4}\right)^2\ge\forall x\Rightarrow\left(2x-\dfrac{5}{4}\right)^2-\dfrac{25}{16}\ge-\dfrac{25}{16}\forall x\)Vậy Min B = \(-\dfrac{25}{16}\)

Để B = \(-\dfrac{25}{16}\) thì \(2x-\dfrac{5}{4}=0\Rightarrow2x=\dfrac{5}{4}\Rightarrow x=\dfrac{5}{8}\)

\(c,C=3x^2-6x\)

\(=3\left(x^2-2x+1\right)-3\)

\(=3\left(x-1\right)^2-3\)

Ta có:

\(3\left(x-1\right)^2\ge0\forall x\Rightarrow3\left(x-1\right)^2-3\ge-3\)

vậy Min C = -3

Để C = -3 thì x-1=0 => x = 1

\(d,D=5x^2-15x\)

\(=5\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{45}{4}\)

\(=5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\)

Ta có:

\(5\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow5\left(x-\dfrac{3}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)Vậy Min D = \(-\dfrac{45}{4}\)

Để \(D=-\dfrac{45}{4}\) thì \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(e,E=x^2+3x+4\)

\(=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

Vậy Min E = \(\dfrac{7}{4}\) khi \(x+\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)

\(f,F=2x^2-4x+7\)

\(=2\left(x^2-2x+1\right)+5\)

\(=2\left(x-1\right)^2+5\ge5\forall x\)

Vậy Min F = 5 khi x - 1 =0 => x = 1

\(g,2x^2-3x=2\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{8}\)

\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\forall x\)

Vậy Min G = \(\dfrac{-9}{8}\) khi \(x-\dfrac{3}{4}=0\Rightarrow x=\dfrac{3}{4}\)

\(h,H=3x^2-4x=3\left(x^2-\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}\)

\(=3\left(x-\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\forall x\)

Vậy Min H = \(-\dfrac{4}{3}\) khi \(x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)

11 tháng 5 2020

\(x^3-6x^2+5x+12>0\\ < =>\left(x^3-5x-x+5x\right)+12>0\\ < =>\left[\left(x^3-x\right)-\left(5x-5x\right)\right]+12>0\\ < =>x^2+12>0\\ < =>x^2>-12\\ =>x\in R\\ BPTcóvôsốnghiem\)