Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
\(\Leftrightarrow\left(5x^2-2x+10\right)^2-\left(3x^2+10x-8\right)^2=0\)
\(\Leftrightarrow\left(5x^2-2x+10+3x^2+10x-8\right)\left(5x^2-2x+10-3x^2-10x+8\right)=0\)
\(\Leftrightarrow\left(8x^2+8x+2\right)\left(2x^2-12x+18\right)=0\)
\(\Leftrightarrow2\left(4x^2+4x+1\right).2\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow4\left(2x+1\right)^2\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)
Vậy ..........
=> 5x^2 - 2x + 10=3x^2 + 10x - 8
=> 2x^2 -12x +18 = 0
=> 2(x^2 - 6x +9) = 0
=> 2(x - 3)^2 = 0
=> x - 3 = 0
=> x = 3
(5x2−2x+10)2=(3x2+10x−8)2
⇔(5x2−2x+10)2−(3x2+10x−8)2=0
⇔(5x2−2x+10+3x2+10x−8)(5x2−2x+10−3x2−10x+8)=0
⇔(8x2+8x+2)(2x2−12x+18)=0
⇔2(4x2+4x+1).2(x2−6x+9)=0
⇔4(2x+1)2(x−3)2=0
⇔[2x+1=0
x−3=0
⇔⎡⎣x=−12x=3
Bạn xem lời giải tại đây:
Câu hỏi của Huyền - Toán lớp 8 | Học trực tuyến
\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)
\(\Leftrightarrow7x^2+58x+115=0\)
\(\Leftrightarrow7x^2+23x+35x+115=0\)
\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\Leftrightarrow x=-5\\7x+23=0\Leftrightarrow x=-\dfrac{23}{7}\end{matrix}\right.\)
Vậy \(S=\left\{-5;-\dfrac{23}{7}\right\}\)
=>( 2x2 -12x +18 ) ( 8x2 +8x +2) =0
=> x2 - 6x + 9 =0 => x =3
hoặc 4x2 +4x +1 =0 =>x =-1/2
a) \(\left(x+2\right)^2-9\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(3x-6\right)^2=0\)
\(\Leftrightarrow\left(x+2+3x-6\right)\left(x+2-3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-4\right)=0\\\left(8-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
b)\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\frac{23}{7}\end{matrix}\right.\)
c) \(\left(5x^2-2x+10\right)^2-\left(3x^2+10x-8\right)^2=0\)
\(\Leftrightarrow\left(5x^2-2x+10-3x^2-10x+8\right)\left(5x^2-2x+10+3x^2+10x-8\right)=0\)
\(\Leftrightarrow\left(2x^2-5x+18\right)\left(8x^2+8x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=3\end{matrix}\right.\)
a) \(\left(2x-5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x-5+x+2\right)\left(2x-5-x-2\right)=0\)
\(\Leftrightarrow\left(3x-3\right)\left(x-7\right)=0\)
b) Cách làm giống câu a
\(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2+10x-8=5x^2-2x+10\\3x^2+10x-8=-5x^2+2x-10\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2-12x+18=0\\8x^2+8x+2=0\end{cases}}\)
\(TH1:2x^2-12x+18=0\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)
\(TH2:8x^2+8x+2=0\)
\(\Leftrightarrow4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
dễ mà bn
\(\left(5x^2-2x+10\right)^2\)- \(\left(3x^2+10x-8x\right)^2\) = 0
<=>\(_{\left(5x^2-2x+10-3x^2-10x+8\right)}\) \(\left(5x^2-2x+10+3x^2+10x-8\right)\)
<=>\(\left(2x^2-12x+18\right)\) \(\left(8x^2-8x-2\right)\)