\(5x^2-26x-24=0 \)

tìm x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

5x2 - 26x - 24 = 0

⇔ 5x2 - 30x + 4x - 24 = 0

⇔ 5x( x - 6 ) + 4( x - 6 ) = 0

⇔ ( x - 6 )( 5x + 4 ) = 0

⇔ x - 6 = 0 hoặc 5x + 4 = 0

⇔ x = 6 hoặc x = -4/5

29 tháng 10 2020

Trả lời :

5x2 - 26x - 24 = 0

=> 5x . (x - 6) + 4x - 24 = 0

=> 5x . (x - 6) + 4 . (x - 6) = 0

=> (5x + 4) . (x - 6) = 0

\(\Rightarrow\orbr{\begin{cases}5x+4=0\\x-6=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=6\end{cases}}\)

21 tháng 3 2020

1)\(6x^2-20x+6=0\)

<=>\(6x^2-18x-2x+6=0\)

<=>6x(x-3)-2(x-3)=0

<=>(6x-2)(x-3)=0

<=>6x-2=0

hoặc x-3=0

<=>x=\(\frac{1}{3}\)

hoặc x=3

Vậy...

2)\(8x^2+10x-3=0\)

=>\(8x^2-2x+12x-3=0\)

<=>2x(4x-1)+3(4x-1)=0

<=>(2x+3)(4x-1)=0

<=>2x+3=0<=>x=\(\frac{3}{2}\)

hoặc 4x-1=0<=>x=\(\frac{1}{4}\)

Vậy ........

3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)

<=> 2x(2x-1)+5(2x-1)=0

<=> (2x+5)(2x-1)=0

Giải ra các trường hợp là xong

4)Phương trình tương đương:\(x^2-10x+25-1=0\)

<=>\(\left(x-5\right)^2-1^2=0\)

<=>(x-5-1)(x-5+1)=0

<=>(x-6)(x-4)=0 Giải các TH nữa là xong

5)\(x^2-5x-24\)=0

<=>\(x^2-8x+3x-24=0\)

<=>x(x-8)+3(x-8)=0

<=>(x+3)(x-8)=0

Giải ra các nghiệm nữa là xong

6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)

<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)

<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0

Đến đây tự làm nhé

7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)

<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0

<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0

Đến đây dễ rồi

14 tháng 3 2019

Pt đã cho \(\Leftrightarrow3x+10x+8+2x+20x+48=9x+6x-36\Leftrightarrow35x+56=15x-36\Leftrightarrow20x=-92\)

\(\Rightarrow x=\frac{-23}{5}\)

21 tháng 10 2018

\(a,-3x^2+5x=0\)

\(\Rightarrow x\left(5-3x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\5-3x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy................

\(b,x^2-5x-24=0\)

\(\Rightarrow x^2-8x+3x-24=0\)

\(\Rightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)

\(\Rightarrow x\left(x+3\right)-8\left(x+3\right)=0\)

\(\Rightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

Vậy........................

21 tháng 10 2018

thanks bn vì lời góp ý

4 tháng 6 2016

56% của 5789 kg là :

5789 x 56% = 3241,84 kg

Đáp số : 3241,84 kg

3 tháng 8 2017

Bài 2:

\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)

Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì

\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)

Với \(f\left(-4\right)\) ta có:

\(f\left(-4\right)=-64+16a-4b-60=0\)

\(\Leftrightarrow16a-4b=124\)

(1)

Với \(f\left(-5\right)\) , ta có:

\(f\left(-5\right)=-125+25a-5b-60=0\)

\(\Leftrightarrow25a-5b=185\)(2)

Từ (1) và (2) , ta có:

\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)

Giải hệ ta được :

\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)

p/s: Lm xog chả bk mk lm cái zề nữa hiha

T.Thùy Ninh

3 tháng 8 2017

Theo bài toán:

\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)

\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)

Ta có:

\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)

\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)

\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)

\(=x^3-4x^2+x+6\)

p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha

30 tháng 10 2018

a) x(4x2 - 1) = 0

=> x(2x-1)(2x+1)=0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.......\)

b) \(3\left(x-1\right)^2-3x\left(x-5\right)-2=0\)

\(\Rightarrow3x^2-6x+3-3x^2+13=0\\ \Rightarrow13-6x=0\\ \Rightarrow x=\dfrac{13}{6}\)

\(d.2x^2-5x-7=0\\ \Rightarrow2x^2+2x-\left(7x+7\right)=0\\ \Rightarrow2x\left(x+1\right)-7\left(x+1\right)=0\\ \Rightarrow\left(2x-7\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\Rightarrow x=\dfrac{7}{2}\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

25 tháng 1 2017

a, x3 +x2 -12x=0

\(\Leftrightarrow\)x3 +4x2-3x2-12x=0

\(\Leftrightarrow\) x2(x+4)-3x(x+4)=0

\(\Leftrightarrow\) (x2-3x)(x+4)=0

\(\Leftrightarrow\)x(x-3)(x+4)=0

\(\left[\begin{matrix}x=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[\left[\begin{matrix}x=0\\x=3\\x=-4\end{matrix}\right.\)

Vậy S\(=\)\(\left\{0;3;-4\right\}\)

25 tháng 1 2017

b.x3-4x2-x+4=0

\(\Leftrightarrow\)x2(x-4)-(x-4)=0

\(\Leftrightarrow\) (x2 -1)(x-4)=0

\(\Leftrightarrow\)(x-1)(x+1)(x-4)=0

\(\left[\begin{matrix}x+1=0\\x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=-1\\x=4\end{matrix}\right.\)

Vậy S=\(\left\{1;-1;4\right\}\)

29 tháng 7 2019

\(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}}\)

29 tháng 7 2019

\(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)