Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^3-\left(5x\right)^3-5\times\left(5x\right)^2\)+ 5
\(=8-125x^3-125x^2+5\)
\(=-125x^2\left(x-1\right)+13\)
\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\left(\frac{\left(5x+2\right)\left(x+10\right)+\left(5x-2\right)\left(x-10\right)}{x\left(x^2-100\right)}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{10\left(x^2+4\right)}{x\left(x^2-100\right)}.\frac{x^2-100}{x^2+4}=\frac{10}{x}\)
Với \(x=20040\)
\(\Rightarrow A=\frac{10}{20040}=\frac{1}{2004}\)
=(xy(8x+4+5y))/2xy -3x^2
=(8x+4+5y)/2 +3x^2
=(8x+4+5y)/2 + 6x^2 /2
=(8x+4+5y-6x^2)/2
a: \(=\dfrac{6x^2-3x+4x^2+2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x\left(4x+5\right)}\)
\(=\dfrac{10x^2+x}{\left(2x+1\right)}\cdot\dfrac{2x-1}{2x\left(4x+5\right)}\)
\(=\dfrac{\left(10x^2+x\right)\left(2x-1\right)}{2x\cdot\left(2x+1\right)\left(4x+5\right)}\)
b: \(=\left(\dfrac{x}{\left(5x-1\right)\left(5x+1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x}\right)\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x}{5\left(5x-1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x^2\left(5x+1\right)+5x\left(5x-1\right)}{5\left(5x-1\right)^2}\)
\(=\dfrac{5x^3+x^2+25x^2-5x}{5\left(5x-1\right)^2}=\dfrac{5x^3+26x^2-5x}{5\left(5x-1\right)^2}\)
c: \(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x^2+1\right)}\cdot\dfrac{x^2+1}{x-1}\)
\(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x-1\right)}\)
\(=\dfrac{x^3-x+\left(1-3x\right)\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-x+x-2-3x^2+6x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x^3-3x^2+6x-2}{x\left(x-1\right)\left(x-2\right)}\)
Câu 1 :
a, Ta có : \(x^2-10x=-25\)
=> \(x^2-10x+25=0\)
=> \(\left(x-5\right)^2=0\)
=> \(x-5=0\)
=> \(x=5\)
Vậy phương trình có nghiệm là x = 5 .
b, Ta có : \(5x\left(x-1\right)=x-1\)
=> \(5x\left(x-1\right)-x+1=0\)
=> \(5x\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(5x-1\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)
c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)
=> \(2\left(x+5\right)-x\left(x+5\right)=0\)
=> \(\left(2-x\right)\left(x+5\right)=0\)
=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 2, x = -5 .
d, Ta có : \(x^2-2x-3=0\)
=> \(x^2-3x+x-3=0\)
=> \(x\left(x+1\right)-3\left(x+1\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 3, x = -1 .
e, Ta có : \(2x^2+5x-3=0\)
=> \(2x^2+6x-x-3=0\)
=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)
=> \(\left(x+3\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)
\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
Vậy nghiệm của phương trình trên là \(5\)
\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)
a) \(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-3^2\)
\(\left(x^2+2-3\right)\left(x^2+2+3\right)\)
b) \(-x-y^2+x^2-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)\(=\left(x+y\right)\left(x-y-1\right)\)
c) \(x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
d) \(x^2-5x+5y-y^2=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
e) \(5x^3-5x^2y-10x^2+10xy=5x^2\left(x-y\right)-10x\left(x-y\right)\)
\(=5\left(x-y\right)\left(x^2-2x\right)\)
f) \(27x^3-8y^3=\left(3x\right)^3-\left(2y\right)^3=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
\(\left(5x^2-10x\right):5x+\left(5x+2\right)^2:\left(5x+2\right)\\ =5x^2:5x-10x:5x+\left(5x+2\right)\\ =x-2+5x+2\\ =6x\)