\(\dfrac{2}{5}\) ; x . y = \(\dfrac{3}{4}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)

\(\Leftrightarrow x=4k,y=5k\) (1)

Theo bài ra ta có: xy = 80

Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)

3 tháng 11 2018

a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

30 tháng 11 2017

a, Ta có:

\(x-24=y\\ x-y=24\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)

+) \(\dfrac{x}{7}=6\Rightarrow x=6\cdot7=42\)

+) \(\dfrac{y}{3}=6\Rightarrow6\cdot3=18\)

Vậy \(x=42;y=18\)

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-z}{7-2}=\dfrac{48}{5}=9,6\)

+) \(\dfrac{x}{5}=9,6\Rightarrow x=9,6\cdot5=48\)

+) \(\dfrac{y}{7}=9,6\Rightarrow y=9,6\cdot7=67,2\)

+) \(\dfrac{z}{2}=9,6\Rightarrow z=9,6\cdot2=19,2\)

Vậy \(x=48;y=67,2;z=19,2\)

30 tháng 11 2017

mk giải đc bao nhiêu thì bn làm bấy nhiêu nha

a)\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có;

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2}{9}=\dfrac{x-3y+42}{4-3.3+9.21}=\dfrac{62}{184}=\dfrac{31}{92}\)

=>x=...;y=....

22 tháng 12 2017

Ta có : x - 24 = y

=> x - y = 24

Lại có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{24}{4}=6\)

( theo tính chất của dãy tỉ số bằng nhau )

Nên \(\dfrac{x}{7}=6\) => x = 42

\(\dfrac{y}{3}=6\) => y = 18

Vậy x = 42, y = 18

22 tháng 12 2017

Ta có :\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{y-x}{7-5}=\dfrac{48}{2}=24\)

( theo tính chất dãy tỉ số bằng nhau )

Nên \(\dfrac{x}{5}=24\) => x = 120

\(\dfrac{y}{7}=24\) => y = 168

\(\dfrac{z}{2}=24\) => z = 48

Vậy x = 120, y = 168, z = 48

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi