K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2019

\(2^x\cdot2^{x+1}\cdot2^{x+2}=100...00:5^{18}\)

\(2^{3x+3}=10^{18}:5^{18}\)

\(2^{3x+3}=2^{18}\)

\(\Rightarrow3x+3=18\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

30 tháng 10 2015

b)

\(5^x.5^{x+1}.5^{x+2}=5^x.5^x.5.5^x.5^2=5^{x+x+x+1+3}=5^{3x+3}\le10^{18}:2^{118}\)

\(=>5^{3x+3}\le5^{18}=>3x+3\le18=>x\le5=>x\in\left\{0;1;2;3;4;5\right\}\)

**** bn, câu a tự lm nhé

3 tháng 1 2016

Cần gấp j ai mà suy nghĩ kịp chứ.

3 tháng 1 2016

100...000 :218 =518

Vậy 3x + 3 =18

Suy ra n = 5

3 tháng 8 2017

mình củng đang bím câu đó đây

16x<1284

=>(24)x<(27)4

=>24x<228

=>4x<28

=>x<7

=>x=0;1;2;3;4;5;6

vậy x=0;1;2;3;4;5;6

b,=>5x.5x+1.5x+2<1010:218

=>53x+3<510.210:218

=>53x+3<510.28

=>53x+3:510<28

=>53(x+1)-10<256<54

=>3(x+1)-10<4

=>3(x+1)<4+10

=>x+1<14/3<5

=>x<4

=>x=0;1;2;3

vậy x=0;1;2;3

 

27 tháng 7 2015

       16^x < 128^4

=>    2^4x  < 2^7.4 

=> 2 ^4x   < 2^28

=> 4x < 28 

=> x < 7 

4 tháng 6 2018

a) x15= x.

=> x15- x= 0.

=> x( x14- 1)= 0.

=> \(\orbr{\begin{cases}x=0.\\x^{14}-1=0.\end{cases}}\)

=> \(\orbr{\begin{cases}x=0.\\x^{14}=1.\end{cases}}\)

=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)

Vậy x\(\in\) { 0; 1}

b) 16x< 128.

Nếu x= 0 thì 16x= 160= 0( chọn)

Nếu x= 1 thì 16x= 161= 16( chọn)

Nếu x= 2 thì 16x= 162= 256( loại)

Vậy x\(\in\) { 0; 1}

c) 5x. 5x+ 1. 5x+ 2\(\le\) 1000...00: 218( 18 chữ số 0)

=> 5x+ x+ 1+ x+ 2\(\le\) 1018: 218.

=> 53x+ 3\(\le\) 518.

=> 3x+ 3\(\le\) 18.

=> 3x\(\le\) 15.

=> x\(\le\) 5.

=> x\(\in\){ 0; 1; 2; 3; 4; 5}

Vậy x\(\in\){ 0; 1; 2; 3; 4; 5}

d) 2x.( 22)2=( 23)2.

=> 2x. 24= 26.

=> 2x= 26: 24.

=> 2x= 22.

=> x= 2.

Vậy x= 2.

e)( x5)10= x.

=> x50- x= 0.

=> x( x49- 1)= 0.

=> \(\orbr{\begin{cases}x=0.\\x^{49}-1=0.\end{cases}}\)

=> \(\orbr{\begin{cases}x=0.\\x^{49}=1.\end{cases}}\)

=> \(\orbr{\begin{cases}x=0.\\x=1.\end{cases}}\)

Vậy x\(\in\) { 0; 1}

4 tháng 6 2018

\(x^{15}=x\)

\(\Rightarrow x^{15}-x=0\)

\(\Rightarrow x\left(x^{14}-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\Rightarrow x=\pm1\end{cases}}\)