Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình k chép lại đề bài nữa nha!
5x . 56 =625
5x+6= 54
=>x+6=4
=> x=-2
vậy x=-2
\(5^x\cdot\left(5^3\right)^2=625\\ \Leftrightarrow5^x\cdot5^6=5^4\\ \Leftrightarrow5^x=\dfrac{5^4}{5^6}\\ \Leftrightarrow5^x=\dfrac{1}{5^2}\\ \Leftrightarrow5^x=5^{-2}\\ \Leftrightarrow x=-2\)
Vậy \(x=-2\)
a, 5^x . (5^3)^2=625
5^x . 5^6=5^4
5^x=5^4:5^6
5^x=5^-2
=> x=-2
5\(^x\) . (5\(^3\))\(^2\) = 625 5\(^x\) . 5\(^6\) = 5\(^4\) 5\(^x\) = 5\(^4\) : 5\(^6\) 5\(^x\) = 5\(^{-2}\) => x = -2
5x . ( 53 )2 = 625
<=> 5x . 56 = 625
<=> 5x+6 = 625
<=> 5x+6 = 54
<=> x + 6 = 4
<=> x = -2
\(5^x.\left(5^3\right)^2=625\)
\(\Leftrightarrow5^x.5^6=625\)
\(\Leftrightarrow5^x=\frac{1}{5^2}\)
\(\Leftrightarrow x=-2\)
\(\frac{625}{5^n}=5^3\)
\(\Leftrightarrow5^3\cdot5^n=625\)
\(\Leftrightarrow5^{3+n}=625\)
\(\Leftrightarrow5^{3+n}=5^4\)
\(\Leftrightarrow3+n=4\Leftrightarrow n=1\)
\(32< 2^x< 512\)
\(\Leftrightarrow2^5< 2^x< 2^9\)
\(\Leftrightarrow5< x< 9\)
\(\Leftrightarrow x\in\left\{6;7;8\right\}\)
1: Tìm x
a) Ta có: \(\left(2x-1\right)^3=-27\)
\(\Leftrightarrow2x-1=-3\)
\(\Leftrightarrow2x=-3+1=-2\)
hay x=-1
Vậy: x=-1
b) Ta có: \(\left(2x-3\right)^4=625\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=-5\\2x-3=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-5+3=-2\\2x=5+3=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;4\right\}\)
c) Ta có: \(\left(x-2\right)^5=\left(x-2\right)^7\)
\(\Leftrightarrow\left(x-2\right)^5-\left(x-2\right)^7=0\)
\(\Leftrightarrow\left(x-2\right)^5\left[1-\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left[1-\left(x-2\right)\right]\cdot\left[1+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(1-x+2\right)\cdot\left(1+x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)^5\cdot\left(-x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^5=0\\-x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2=0\\-x=-3\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{1;2;3\right\}\)
d) Ta có: \(5^{x+2}+5^{x+3}=750\)
\(\Leftrightarrow5^{x+2}\cdot1+5^{x+2}\cdot5=750\)
\(\Leftrightarrow5^{x+2}\left(1+5\right)=750\)
\(\Leftrightarrow5^{x+2}\cdot6=750\)
\(\Leftrightarrow5^{x+2}=125\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
\(5^x.5^{x+2}=625\)
\(\Leftrightarrow5^{2x+2}=5^4\)
\(\Leftrightarrow2x+2=4\)
\(\Leftrightarrow x=1\)
Vậy ..
5x.5x+2 =625
5x.5x.52 =625
5x+x.25 =625
52x.25 =625
52x =625:25
52x =25
52x = 52
⇒2x =2
x =2:2
x =1
Vậy x=1
=> 5x . 56 = 54
=> 5x = 54 : 56
=> 5x = 54-6
=> 5x = 5-2
=> x = -2